
2017 New Jersey Air Quality Report

New Jersey Department of Environmental Protection

October 30, 2018

New Jersey Department of Environmental Protection Bureau of Air Monitoring Mail Code: 401-02E P. O. Box 420 Trenton, New Jersey 08625-0420 Contact: <u>bamweb@dep.nj.gov</u> Telephone: 609-292-0138

www.njaqinow.net

LIST OF CONTENTS

- 1. Executive Summary
- 2. Air Monitoring Network
- 3. Air Quality Index
- 4. Ozone
- 5. Particulate Matter
- 6. Nitrogen Dioxide
- 7. Sulfur Dioxide
- 8. Carbon Monoxide
- 9. Meteorology
- 10. Air Toxics
- Appendix A: Air Monitoring Sites
- Appendix B: Fine Particulate Speciation Data

Cover photo: Newark/New York City HazeCam, <u>http://www.hazecam.net/camsite.aspx?site=newark</u>, 5/31/2018.

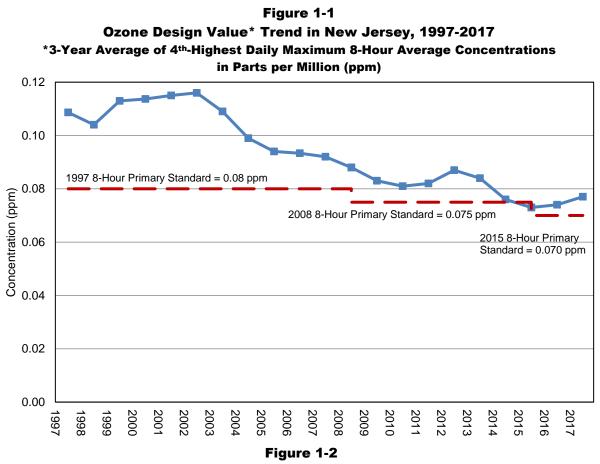
EXECUTIVE SUMMARY

This report summarizes the New Jersey Department of Environmental Protection (NJDEP) air quality monitoring data for 2017, collected from NJDEP's extensive air monitoring network. The state of New Jersey has been monitoring air quality since 1965. During that time pollution levels have improved significantly, as a result of state, regional and national air pollution reduction efforts.

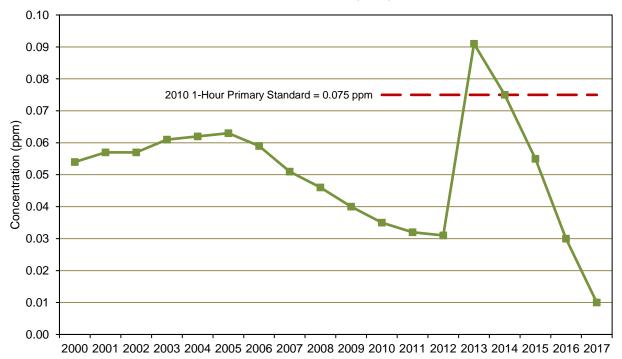
The chapter on the Air Quality Index (AQI), a national air quality rating system based on the National Ambient Air Quality Standards (NAAQS), describes the overall quality of New Jersey's air in 2017, and lists the days on which the AQI was over 100 (and NAAQS were exceeded). Nineteen days were classified as "Unhealthy for Sensitive Groups" in 2017, because their numerical AQI ratings were greater than 100. No days were classified as "Unhealthy" (AQI ratings greater than 150).

This report also includes detailed chapters for ozone, sulfur dioxide, nitrogen dioxide, particulate matter, and carbon monoxide. These are the criteria pollutants, those for which NAAQS have been set. Other information collected at our air monitoring stations includes meteorology, air toxics, and particulate species.

Figures 1-1 through 1-5 below illustrate the downward trends in concentrations of criteria pollutants in New Jersey over the past few decades.


New Jersey is getting close to meeting the ozone NAAQS, and will continue to implement emission control strategies while pursuing emissions reductions, including in upwind states that affect New Jersey's air. Because ozone is formed in the presence of sunlight and high temperatures, it can reach significant levels in the summer months. It also has been found to have serious health effects at lower levels than previously thought. In response, the United States Environmental Protection Agency (USEPA) periodically revises and lowers the NAAQS. USEPA lowered the ozone standard to 0.070 ppm in 2015.

The sharp increase and subsequent decrease in sulfur dioxide (SO₂) concentrations in New Jersey shown in Figure 1-2 are attributable to a coal-burning facility across the Delaware River in Pennsylvania. NJDEP established the Columbia Wildlife Management Area monitoring station in 2010 to determine the facility's impact on New Jersey's air quality. Exceedances of the SO₂ NAAQS were recorded that same year. Since the plant ceased operations under a court agreement, SO₂ levels in New Jersey have again achieved the standard.


Nitrogen dioxide (NO₂) is a reactive gas emitted primarily from motor vehicles. It is known to cause serious health problems, especially for sensitive individuals such as children, the elderly, and people with asthma. New Jersey has long been in compliance with the NAAQS for NO₂.

Particulate air pollution less than 2.5 micrometers in diameter is referred to as fine particulate or $PM_{2.5}$. These small particles can be inhaled deep into the lungs, and are known to have a greater impact on public health than larger particles, which were the focus of previous ambient air quality standards. Monitoring data in New Jersey shows a steady decline in $PM_{2.5}$ levels that are now in compliance with the NAAQS.

Outdoor concentrations of carbon monoxide can affect people with cardiovascular problems. Levels in New Jersey have been below the NAAQS for over twenty years.

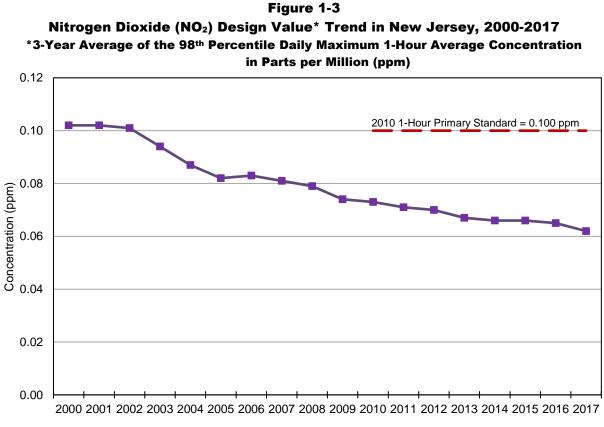


Figure 1-4

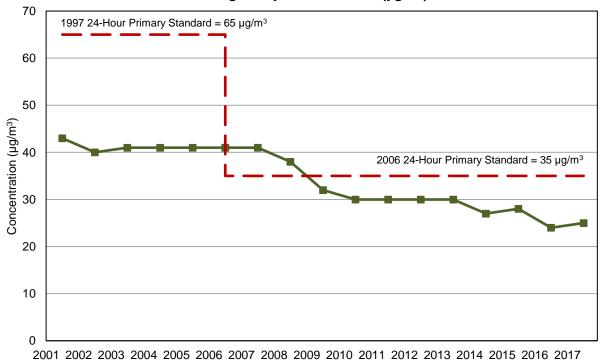
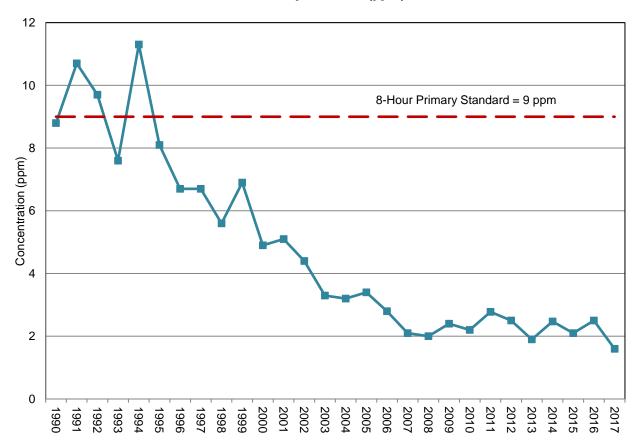



Figure 1-5 Carbon Monoxide (CO) Design Value* Trend in New Jersey, 1990-2017 *2nd-Highest 8-Hour Average Concentration in Parts per Million (ppm)

2017 Air Monitoring Network

New Jersey Department of Environmental Protection

NETWORK DESCRIPTION

In 2017, the New Jersey Department of Environmental Protection (NJDEP) Bureau of Air Monitoring (BAM) operated 33 ambient air monitoring stations. The monitoring stations vary in the number and type of monitors operating at each site. New Jersey's air monitoring program is primarily focused on the measurement of pollutants for which National Ambient Air Quality Standards (NAAQS) have been established, also known as criteria pollutants. Criteria pollutant monitoring is regulated by the United States Environmental Protection Agency (USEPA), which prescribes the design and siting of the monitoring networks, the acceptable monitoring methods, and the minimum quality assurance activities. Only data which meet USEPA requirements can be used to determine compliance with the NAAQS. There are six criteria air pollutants: carbon monoxide (CO), lead (Pb), nitrogen dioxide (NO₂), ozone (O₃), sulfur dioxide (SO₂), and particulate matter (PM). Because particulate matter encompasses such a wide range of contaminants, there are separate NAAQS for two different size fractions of particles. There are NAAQS for fine particles, less than 2.5 microns in size, also referred to as PM_{2.5} (1 micron = one millionth of a meter), and another NAAQS for inhalable particles, less than 10 microns in size, referred to as PM₁₀.

In New Jersey, O₃, CO, NO₂, and SO₂ are measured using USEPA-approved real-time monitoring methods, and data for these pollutants are continuously transmitted to a central data acquisition system. Once an hour, the Bureau of Air Monitoring posts this air quality data to its website (www.njaqinow.net) and to the USEPA's Air Now website (www.airnow.gov). Data is subsequently reviewed and certified, and is available from USEPA's Air Quality Database at <u>https://www.epa.gov/outdoor-</u> air-quality-data.

 $PM_{2.5}$ is measured with both 24-hour filter-based samplers and real-time continuous monitors. Filters must be installed and removed manually, and brought to the BAM lab to be weighed and analyzed. A filterbased sampler is also used to determine lead, PM_{10} , and PM_{coarse} concentrations (PM larger than 2.5 microns and smaller than 10 microns).

In addition to monitoring criteria pollutants, the NJDEP also measures "non-criteria pollutants," or pollutants that do not have health-based National Ambient Air Quality Standards. Certain non-criteria pollutants are grouped together by their purpose or collection method. USEPA's Photochemical Assessment Monitoring Station (PAMS) program, for example, measures non-criteria pollutants that are important in the formation of ozone. Since most ozone is not directly emitted from sources but forms in the atmosphere when volatile organic compounds and oxides of nitrogen react in the presence of sunlight, it is important to know the levels of these "precursor" pollutants.

Other non-criteria pollutants monitored by BAM include some that are commonly emitted by motor vehicles and other combustion sources: Benzene, toluene, ethylbenzene, ortho-xylene, meta-xylene, para-xylene (measured with a "BTEX" analyzer), and black carbon (measured with an aethalometer).

Five sites in the monitoring network collect samples of PM_{2.5} that are analyzed to determine the chemical makeup of the particles. These are part of USEPA's Chemical Speciation Network (CSN). This data is used in helping to identify the primary sources of particles, and in assessing potential health effects.

Figure 2-2 USEPA-Approved PM_{2.5} Sampler in Jersey City

Volatile organic compounds (VOCs) are collected and analyzed at four monitoring sites. These non-criteria pollutants are classified as "air toxics," pollutants that have potential health effects but for which NAAQS have not been established. They can be carcinogenic or have other serious health effects, and are very diverse in their chemical composition.

Two sites, Cattus Island and Washington Crossing, are part of the National Atmospheric Deposition Network. BAM staff collect the samples and ship them to a national laboratory for analysis of acids, nutrients, and base cations in precipitation.

A number of sites within the air monitoring network also take measurements of meteorological parameters, such as temperature, relative humidity, barometric pressure, wind speed, wind direction, precipitation, and solar radiation.

Figure 2-1 shows the seasonal ozone monitoring station at Ramapo Mountain State Forest in Passaic County. Figure 2-2 shows a USEPA-approved manual PM_{2.5} sampler located at the Jersey City Firehouse on Newark Avenue.

The locations of all the monitoring stations that operated in 2017 are shown on the map in Figure 2-3. Table 2-1 lists the parameters that were measured at each site. More details about the monitoring stations can be found in Appendix A.

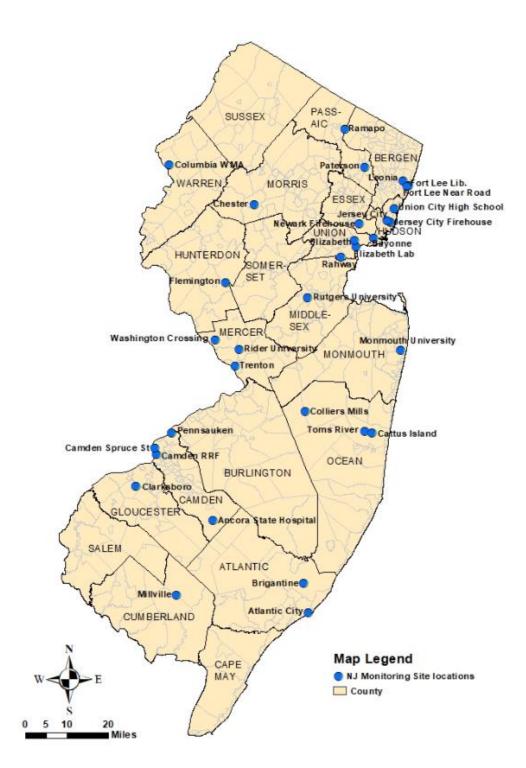


Figure 2-3 New Jersey Air Monitoring Sites in 2017

Monitoring Parameter Q			201		iew	00	130	,				IJ	HC			Jun		u y		1			
Immunity Station I <thi< th=""> I I</thi<>		Parameter	0	ox	oy	3	02	moke Shade	M _{2.5}	eal-Time PM2.5 TEOM	eal-Time PM _{2.5} Beta	isibility	M ₁₀	ead/PM _{coarse}	M _{2.5} -Speciation	3 Precursors (PAMS)	oxics	TEX/ Black Carbon	cid Deposition	ercury	eteorological#	ain	olar Radiation
2 Atlanic City N N N 1 N 1 <t< th=""><th></th><th></th><th>S</th><th>N</th><th>z</th><th>0</th><th>S</th><th>S</th><th>d</th><th>R</th><th>R</th><th>٨</th><th>d</th><th>Ĺ</th><th>d</th><th>0</th><th>T</th><th>В</th><th>A</th><th>Ν</th><th>Ν</th><th>R</th><th>s</th></t<>			S	N	z	0	S	S	d	R	R	٨	d	Ĺ	d	0	T	В	A	Ν	Ν	R	s
3 Bayone 1 <td>1</td> <td>Ancora State Hospital</td> <td></td> <td></td> <td></td> <td>1</td> <td></td>	1	Ancora State Hospital				1																	
4 Brigantine 1	2	Atlantic City							1														
5 Canden SRF 1	3	Bayonne		1		1	1											1			1	1	
6 Carden Spruce Street 1	4	Brigantine				1	1		1		1	1							1				
7 Cattus Island 1 <	5	Camden RRF											1										
8 Chester 1 </td <td>6</td> <td>Camden Spruce Street</td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td></td> <td>2</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td>	6	Camden Spruce Street	1	1		1	1		2		1				1		1	1			1	1	
9 Clarksboro 1	7	Cattus Island																	1				
10 Colliers Mills 1	8	Chester		1		1	1		1						1		1						
11 Columbia 1	9	Clarksboro				1			1a														
12 Elizabeth 1	10	Colliers Mills				1																	
13 Elizabeth Lab 1	11	Columbia		1		1	1		1		1										1	1	
14 Flemington 1 <td< td=""><td>12</td><td>Elizabeth</td><td>1</td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	12	Elizabeth	1				1	1															
15 Fort Lee Library I <thi< th=""> <thi< th=""> I</thi<></thi<>	13	Elizabeth Lab	1	1			1	1	2		1				1		1	1		1	1	1	
15 Fort Lee Library I <thi< th=""> <thi< th=""> I</thi<></thi<>	14	Flemington				1					1										1	1	
16 Fort Lee Near Road 1	15								1														
18 Jersey City 1 <t< td=""><td>16</td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td>1</td><td>1</td><td></td></t<>	16		1	1							1							1			1	1	
19 Jersey City Firehouse 1 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 <td>17</td> <td>Gibbstown *</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1b</td> <td></td>	17	Gibbstown *							1b														
19 Jersey City Firehouse 1 1 2 1 2 1 2 1 <td>18</td> <td>Jersey City</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td>	18	Jersey City	1	1			1	1															
20 Leonia 1 </td <td>19</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>1</td> <td></td> <td>2</td> <td></td>	19								2		1		2										
22 Monmouth University I	20					1																	
23 Newark Firehouse 1	21	Millville		1		1					1												
23 Newark Firehouse 1	22	Monmouth University				1																	
24PatersonIII<	23	-	1	1	1	1	1		1		1		1	1	1			1			1	1	1
25 Pennsauken I <td< td=""><td>_</td><td>Paterson</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	_	Paterson																					
26 Rahway Image: Constraint of the system of the syst	25	Pennsauken																					
27 Ramapo 1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>										1													
28 Rider University 1						1			-														
29 Rutgers University 1	_										1										1		
30 Toms River 1 <td< td=""><td>29</td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>2</td><td>1</td><td>1</td><td></td><td></td><td>1</td><td></td><td></td><td></td></td<>	29			1		1			1						2	1	1			1			
32 Union City High School** 1 1 0<	30								1														
33 Washington Crossing 1	31	Trenton							1														
	32	Union City High School**							1														
TOTAL 6 10 1 16 9 0 20 1 11 1 4 1 6 1 4 5 3 2 8 7 1	33	Washington Crossing																	1				
		TOTAL	6	10	1	16	9	0	20	1	11	1	4	1	6	1	4	5	3	2	8	7	1

Table 2-1 2017 New Jersey Air Monitoring Network Summary

Meteorological parameters include temperature, relative humidity, barometric pressure, wind direction & wind speed.

* Monitoring site shut down in 2017 1 - Parameter measured in 2017

2 - Collocated parameter measured in 2017

- a Monitor started up in 2017
- b Monitor shut down in 2017

CHANGES TO THE NETWORK IN 2017

The only change to New Jersey's monitoring network in 2017 was the shutdown of the Gibbstown station in August because of construction activity at the site. The filter-based PM_{2.5} sampler was relocated to the Clarksboro monitoring station.

Table 2-22016 Network Changes (by Date)

Monitoring Site	Parameter(s)	Action	Date
Clarksboro	PM _{2.5} FRM	Moved from Gibbstown	8/8/2017
Gibbstown	PM _{2.5} FRM	Site shut down	8/8/2017

 $\mathsf{PM}_{2.5}\,\mathsf{FRM}$ is a federal reference method filter-based manual sampler for measuring 24-hour samples of inhalable particulate.

REFERENCES

National Atmospheric Deposition Program. Available at http://nadp.sws.uiuc.edu/. Accessed 6/1//2018.

New Jersey Department of Environmental Protection. New Jersey Air Monitoring Website. Available at <u>www.njaqinow.net/</u>. Accessed 6/1/2018.

NJDEP, Bureau of Air Monitoring. Ambient Air Monitoring Network Plan 2018. June 23, 2018.

United States Environmental Protection Agency (USEPA). Air Pollution Monitoring. Available at <u>https://www3.epa.gov/airquality/montring.html</u>. Accessed 6/1/2018.

USEPA. Air Now. Available at <u>https://www.airnow.gov/</u>. Accessed 6/1/2018.

USEPA. Air Data. Available at <u>www.epa.gov/outdoor-air-quality-data</u>. Accessed 6/1/2018.

USEPA. Air Toxics. Available at https://www3.epa.gov/ttnamti1/airtoxpg.html. Accessed 6/1/2018.

USEPA. Air Toxics - Urban Air Toxics Monitoring Program. Available at <u>https://www3.epa.gov/ttn/amtic/uatm.html</u>. Accessed 6/1/2018.

USEPA. Chemical Speciation Network. Available at <u>https://www3.epa.gov/ttn/amtic/speciepg.html</u>. Accessed 6/1/2018.

USEPA. Photochemical Assessment Monitoring Stations (PAMS). Available at <u>https://www3.epa.gov/ttnamti1/pamsmain.html</u>. Accessed 6/1/2018.

USEPA. Ambient Monitoring Technology Information Center (AMTIC). Available at <u>www.epa.gov/amtic/</u>. Accessed 6/1/2018.

2017 Air Quality Index

New Jersey Department of Environmental Protection

WHAT IS THE AIR QUALITY INDEX (AQI)?

The Air Quality Index (AQI) is a national air quality rating system based on the National Ambient Air Quality Standards (NAAQS). An index value of 100 is equal to the primary, or health-based, NAAQS for each pollutant. This allows for a comparison of each of the pollutants used in the AQI. These pollutants are ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. Although air concentrations of pollutants have been dropping over the past few years, the U.S. Environmental Protection Agency (USEPA) periodically reviews the NAAQS to make sure that they are protective of public health, and adjusts them accordingly in response to new research. The latest NAAQS revision, for ozone, occurred in October 2015.

Every morning an air pollution forecast for the current and following day is prepared by the New Jersey Department of Environmental Protection (NJDEP) using the AQI format. The forecast is provided to USEPA and is disseminated through the Enviroflash system to subscribers who sign up to receive air quality forecast and alert emails or texts (<u>www.enviroflash.info</u>). Anyone can view the forecast and current air quality conditions at USEPA's AirNow website (<u>www.airnow.gov</u>) or at NJDEP's air monitoring webpage (<u>www.njaqinow.net/</u>).

In an effort to make the AQI easier to understand, a color code and descriptive interpretation are assigned to the numerical ratings (see Table 3-1). Table 3-2 contains suggested actions to take to protect public health for different AQI levels. For more information on the AQI, visit EPA's web site at <u>www.airnow.gov</u>.

AQI Level of Health Concern	Numerical Value	Meaning	Color Code
Good	0 to 50	Air quality is considered satisfactory, and air pollution poses little or no risk.	Green
Moderate	51 to 100	Air quality is acceptable; however, for some pollutants there may be a moderate health concern for a very small number of people who are unusually sensitive to air pollution.	Yellow
Unhealthy for Sensitive Groups	101 to 150	Members of sensitive groups may experience health effects. The general public is not likely to be affected.	Orange
Unhealthy	151 to 200	Everyone may begin to experience health effects; members of sensitive groups may experience more serious health effects.	Red
Very Unhealthy	201 to 300	Health warnings of emergency conditions. The entire population is more likely to be affected.	Purple
Hazardous	301 to 500	Health alert: everyone may experience more serious health effects.	Maroon

Table 3-1Air Quality Index Levels and Associated Health Impacts

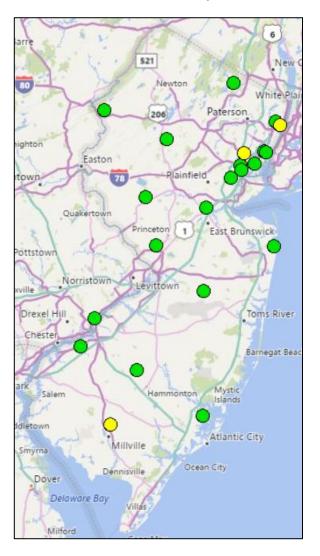
Table 3-2
AQI Suggested Actions to Protect Health

Air Quality Index Level	AQI Value Actions to Protect Your Health
Good (1-50)	None
Moderate (51-100)	Unusually sensitive individuals should consider limiting prolonged outdoor exertion.
Unhealthy for Sensitive Groups (101-150)	Children, active adults, and people with respiratory disease such as asthma should limit prolonged outdoor exertion.
Unhealthy (151-200)	Children, active adults, and people with respiratory disease such as asthma should avoid prolonged outdoor exertion: Everyone else should limit prolonged outdoor exertion.
Very Unhealthy (201-300)	Children, active adults, and people with respiratory disease such as asthma should avoid outdoor exertion. Everyone else should limit outdoor exertion.
Hazardous (301-500)	Everyone should avoid all physical activity outdoors.

Table 3-3 shows the pollutant-specific ranges for the AQI categories. These are set according to the corresponding NAAQS.

		O ₃	PM _{2.5}	СО	SO ₂	NO ₂
Category	AQI Level	(ppm) 8-hour	(µg/m³) 24-hour	(ppm) 8-hour	(ppm) 1-hour	(ppm) 1-hour
Good	0-50	0.000-0.054	0.0-12.0	0.0-4.4	0-0.035	0-0.053
Moderate	51-100	0.055-0.070	12.1-35.4	4.5-9.4	0.036-0.075	0.054-0.100
Unhealthy for Sensitive Groups	101-150	0.071-0.085	35.5-55.4	9.5-12.4	0.076-0.185	0.101- 0.360
Unhealthy	151- 200	0.086-0.105	55.5-150.4	12.5-15.4	0.186-0.304	0.361-0.649
Very Unhealthy	201-300	0.106-0.200	150.5-250.4	15.5-30.4	0.305-0.604	0.605-1.249
Hazardous	301-500	>0.200	250.5-500.4	30.5- 1004	0.605-1.004	1.250-2.049

Table 3-3AQI Pollutant-Specific Ranges


Pollutants:

O₃– Ozone

 $PM_{2.5}$ – Fine particulate matter CO – Carbon monoxide

 $SO_2 - Sulfur dioxide$ $NO_2 - Nitrogen dioxide$ On days when the air quality is expected to reach the "Unhealthy for Sensitive Groups" range or above, cautionary statements similar to those in Tables 3-1 and 3-2 are provided as part of the forecast. These air quality alerts are issued through Enviroflash emails, are displayed on the AirNow and NJDEP air monitoring websites, and can also be viewed on the National Weather Service page for the Philadelphia/Mount Holly area (<u>http://airquality.weather.gov/</u>). Maps, charts, site photos, and other air quality information are also available on the NJDEP air monitoring web site, as shown in Figure 3-1 below.

Figure 3-1 Examples of Information Available on NJDEP's Air Monitoring Website www.njaqinow.net

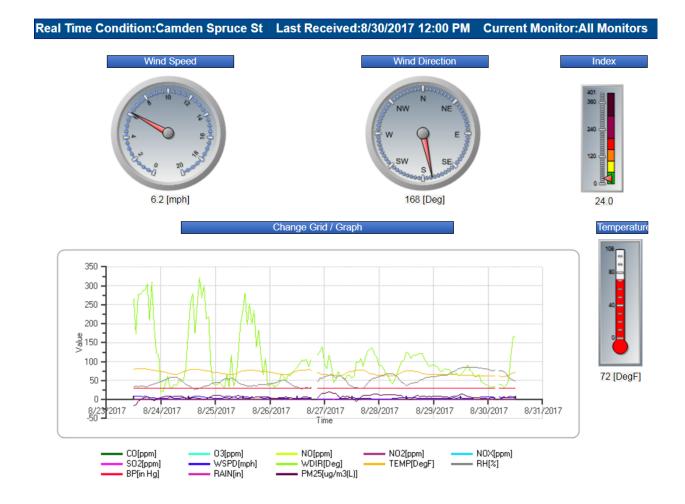

Current Air Quality

Figure 3-1 (continued) Examples of Information Available on NJDEP's Air Monitoring Website

	Monitors	
1	Monitor	Value
	CO[ppm]	0.0
	03[ppm]	
	NO[ppm]	0.001
	NO2[ppm]	0.003
	NOX[ppm]	0.005
	SO2[ppm]	0.000
1	WSPD[mph]	6.2
1	WDIR[Deg]	168
	TEMP[DegF]	72
	RH[%]	48.3
1	BP[in Hg]	29.97
1	RAIN[in]	0.000
1	PM25[ug/m3(L)]	5.6

	⊠ Camder	n Spruce St	
stor	Last Recived: Index Value:	8/30/2017 12:00 PM Good(24)	
m	Pollutants:		
OWE	Name [units]	Value	
5	NO2 [ppm]	0.003	
1	CO [ppm]	0	
air	SO2 [ppm]	0	
wr	PM2.5 [ug/m3(L)]	5.6	
Gla	Click for informatio Click for more deta StationDescription Statistics		

2017 AQI SUMMARY

Not all of New Jersey's monitoring sites have 365 days of reported air quality index values. Certain ozone monitors only operate during "ozone season," from March through October. Also, not all monitoring sites measure all pollutants. Table 3-4 shows which pollutants are used to determine the daily AQI at different monitoring stations.

	Monitoring Site	Ozone	Particulate Matter	Carbon Monoxide	Sulfur Dioxide	Nitrogen Dioxide
1	Ancora State Hospital	√ (s)				
2	Bayonne				\checkmark	\checkmark
3	Brigantine				\checkmark	
4	Camden Spruce St.			\checkmark	\checkmark	\checkmark
5	Chester				\checkmark	\checkmark
6	Clarksboro	√ (s)				
7	Colliers Mills	√ (s)				
8	Columbia WMA				\checkmark	\checkmark
9	Elizabeth			\checkmark	\checkmark	
10	Elizabeth Lab			\checkmark	\checkmark	\checkmark
11	Flemington					
12	Fort Lee Near Road			\checkmark		\checkmark
13	Jersey City			\checkmark	\checkmark	\checkmark
14	Jersey City Firehouse					
15	Leonia	√ (s)				
16	Millville					\checkmark
17	Monmouth University	√ (s)				
18	Newark Firehouse			\checkmark	\checkmark	\checkmark
19	Rahway					
20	Ramapo	√ (s)				
21	Rider University					
22	Rutgers University					\checkmark

Table 3-4Pollutants Monitored at Each Air Quality Index Monitoring Sitein New Jersey in 2017

(s) – Seasonal operation only (March 1 through October 31)

A summary of the AQI ratings for New Jersey in 2017 is presented in the pie chart in Figure 3-2 below. In 2017, there were 143 "Good" days, 203 were "Moderate," and 19 were rated "Unhealthy for Sensitive Groups." There were no days rated "Unhealthy" or "Very Unhealthy." This indicates that air quality in New Jersey is mostly good or moderate, but that air pollution was still bad enough in 2017 to adversely affect sensitive people about 5% of the time. However, this is an improvement from the previous year, when 26 days were unhealthy for sensitive groups and there were two "Unhealthy" days.

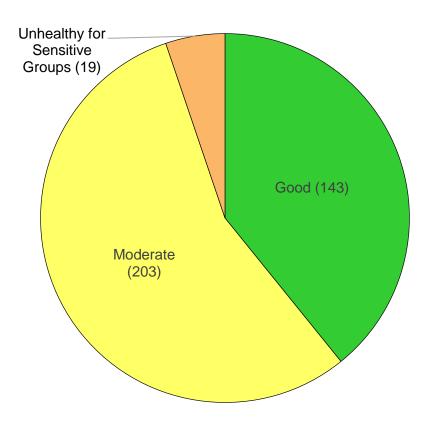


Table 5 lists the dates when the AQI reached the "Unhealthy for Sensitive Groups" threshold at any monitoring location, and shows the responsible pollutants and their concentrations. Fourteen out of the nineteen "USG" days are the result of high ozone levels during warm-weather periods.

Day	Date	Monitor Location	Pollutant	Concen- tration	Units	AQI Rating	AQI Value
1	1/28/17	Camden Spruce St.	PM _{2.5}	36.2	µg/m³	USG	103
2	2/1/17	Camden Spruce St.	PM _{2.5}	37.7	µg/m³	USG	106
3	3/9/17	Camden Spruce St.	PM _{2.5}	40.6	µg/m³	USG	114
		Chester	O ₃	0.075	ppm	USG	115
		Flemington	O ₃	0.077	ppm	USG	122
4	4/11/17	Ramapo	O ₃	0.074	ppm	USG	112
		Rutgers University	O ₃	0.071	ppm	USG	101
		Washington Crossing*	O ₃	0.071	ppm	USG	101
		Camden Spruce St.	O ₃	0.077	ppm	USG	122
		Chester	O ₃	0.072	ppm	USG	105
		Clarksboro	O ₃	0.071	ppm	USG	101
		Columbia	O3	0.071	ppm	USG	101
5	5/17/17	Flemington	O3	0.072	ppm	USG	105
		Leonia	O ₃	0.074	ppm	USG	112
		Rider University	O ₃	0.077	ppm	USG	122
		Rutgers University	O ₃	0.080	ppm	USG	133
		Washington Crossing*	O ₃	0.073	ppm	USG	108
		Camden Spruce St.	O ₃	0.083	ppm	USG	143
		Clarksboro	O ₃	0.076	ppm	USG	119
		Flemington	O ₃	0.072	ppm	USG	105
6	5/18/17	Leonia	O ₃	0.074	ppm	USG	112
		Rider University	O ₃	0.080	ppm	USG	133
		Rutgers University	O ₃	0.075	ppm	USG	115
		Washington Crossing*	O3	0.071	ppm	USG	101
7	6/10/17	Camden Spruce St.	O3	0.076	ppm	USG	119
'	0/10/17	Leonia	O3	0.074	ppm	USG	112
8	6/11/17	Camden Spruce St.	O3	0.071	ppm	USG	101
		Bayonne	O ₃	0.074	ppm	USG	112
		Camden Spruce St.	O ₃	0.074	ppm	USG	112
		Chester	O ₃	0.072	ppm	USG	105
		Clarksboro	O ₃	0.073	ppm	USG	108
0	6/12/17	Colliers Mills	O3	0.080	ppm	USG	133
9	0/12/17	Flemington	O3	0.073	ppm	USG	108
		Leonia	O3	0.082	ppm	USG	140
		Monmouth University	O3	0.071	ppm	USG	101
		Newark Firehouse	O3	0.071	ppm	USG	101
		Rutgers University	O3	0.072	ppm	USG	105

Table 3-5AQI "Unhealthy" or "USG" Days in New Jersey During 2017

Continued on next page.

Day	Date	Monitor Location	Pollutant	Concen- tration	Units	AQI Rating	AQI Value
		Ancora	O3	0.071	ppm	USG	101
		Camden Spruce St.	O3	0.079	ppm	USG	129
10	6/13/17	Clarksboro	O3	0.078	ppm	USG	126
		Colliers Mills	O ₃	0.079	ppm	USG	129
		Leonia	O3	0.074	ppm	USG	112
		Camden Spruce St.	O ₃	0.076	ppm	USG	119
		Leonia	O3	0.071	ppm	USG	101
11	6/22/17	Rider University	O3	0.076	ppm	USG	119
		Rutgers University	O3	0.076	ppm	USG	119
		Washington Crossing*	O3	0.071	ppm	USG	101
12	6/30/17	Leonia	O3	0.079	ppm	USG	129
		Camden Spruce St.	O ₃	0.072	ppm	USG	105
13	7/19/17	Clarksboro	O ₃	0.076	ppm	USG	119
		Colliers Mills	O ₃	0.074	ppm	USG	112
		Ancora	O3	0.073	ppm	USG	108
14	7/20/17	Clarksboro	O3	0.071	ppm	USG	101
		Colliers Mills	O3	0.077	ppm	USG	122
15	7/22/17	Bayonne	O3	0.075	ppm	USG	115
15	1/22/17	Camden Spruce St.	O3	0.076	ppm	USG	119
16	8/1/17	Bayonne	O3	0.072	ppm	USG	105
17	9/24/17	Rutgers University	O ₃	0.078	ppm	USG	126
18	12/4/17	Elizabeth Lab	PM _{2.5}	35.6	µg/m³	USG	101
19	12/10/17	Camden Spruce St.	PM _{2.5}	44.2	µg/m³	USG	122

Table 3-5 (continued)AQI "Unhealthy" or "USG" Days in New Jersey During 2017

Rating USG – Unhealthy for sensitive groups

 $\frac{Pollutants}{PM_{2.5} - Fine \text{ particulate matter}}$ O₃ - Ozone

 $\frac{Units}{\mu g/m^3 - micrograms per cubic meter}$ ppm - parts per million

* Washington Crossing air monitoring station is operated by USEPA. The site's data is included in determining exceedances in New Jersey.

Figure 3-3 shows the distribution of AQI days since 2000. It should be noted that AQI ranges change whenever a NAAQS is revised (so far, always to be more stringent) for a specific pollutant. So even though improvement in AQI days appears to be somewhat erratic, to see how things really have improved, refer to the concentration trend graphs in the individual criteria pollutant reports.

Of all the criteria pollutants, ozone is predominantly responsible for AQI days above the moderate range in New Jersey.

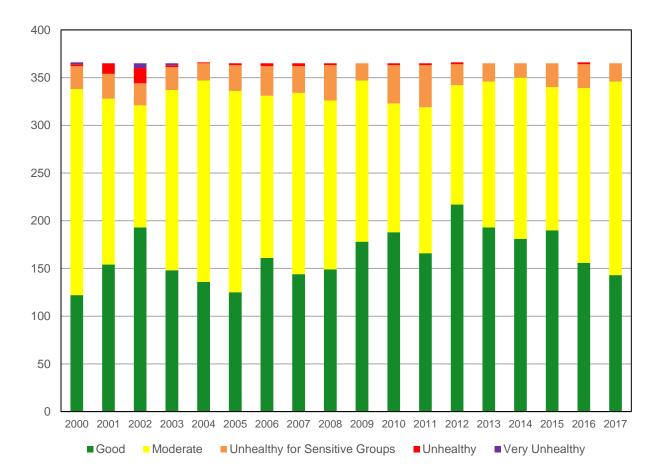


Figure 3-3 Number of Days in Each AQI Category Since 2000

REFERENCES

American Lung Association. Air Quality Index: Using Air Quality information to Protect Yourself from Outdoor Air Pollution. <u>http://www.lung.org/our-initiatives/healthy-air/outdoor/air-pollution/air-quality-index.html</u>. Accessed 6/1/2018.

U.S. Environmental Protection Agency (USEPA) Air Now. *Air Quality Index Basics*. <u>http://airnow.gov/index.cfm?action=aqibasics.aqi</u>. Accessed 6/1/2018.

USEPA Air Now. *Air Quality Index - A Guide to Air Quality and Your Health.* <u>http://airnow.gov/index.cfm?action=aqi_brochure.index</u>. Accessed 6/1/2018.

USEPA Office of Air Quality Planning and Standards. Technical Assistance Document for the Reporting of Daily Air Quality – the Air Quality Index (AQI). May 2016. (EPA-454/B-16-002). https://www3.epa.gov/airnow/aqi-technical-assistance-document-may2016.pdf

"Appendix G to Part 58 - Uniform Air Quality Index (AQI) and Daily Reporting." Title 40 *Code of Federal Regulations*. 2017 ed. <u>http://www.ecfr.gov/cgi-</u> <u>bin/retrieveECFR?gp=&SID=3b421c7ca640647158c90279e577c578&mc=true&n=pt40.6.58&r=PART&ty</u> <u>=HTML#sp40.6.58.g</u>

2017 Ozone Summary

New Jersey Department of Environmental Protection

SOURCES

Ozone (O_3) is a gas consisting of three oxygen atoms. It occurs naturally in the upper atmosphere (stratospheric ozone) where it protects us from harmful ultraviolet rays (see Figure 4-1). However, at ground-level (tropospheric ozone), it is considered an air pollutant and can have serious adverse health effects. Ground-level ozone is created when nitrogen oxides (NO_x) and volatile organic compounds (VOCs) react in the presence of sunlight (see Figure 4-2). NO_x is primarily emitted by motor vehicles, power plants, and other sources of combustion. VOCs are emitted from sources such as motor vehicles, chemical plants, factories, consumer and commercial products, and even natural sources such as trees. The pollutants that form ozone, referred to as "precursor" pollutants, and ozone itself can also be transported into an area from sources hundreds of miles upwind.

Since ground-level ozone needs sunlight to form, it is mainly a problem in the daytime during the summer months. The U.S. Environmental Protection Agency (USEPA) requires New Jersey to monitor ozone from March 1st to October 31st, the so-called "ozone season." Weather patterns have a significant effect on ozone formation, and hot dry summers will result in more ozone than cool wet ones. For a more complete explanation of the difference between ozone in the upper and lower atmosphere, see the USEPA publication, "Good Up High, Bad Nearby – What is Ozone?"

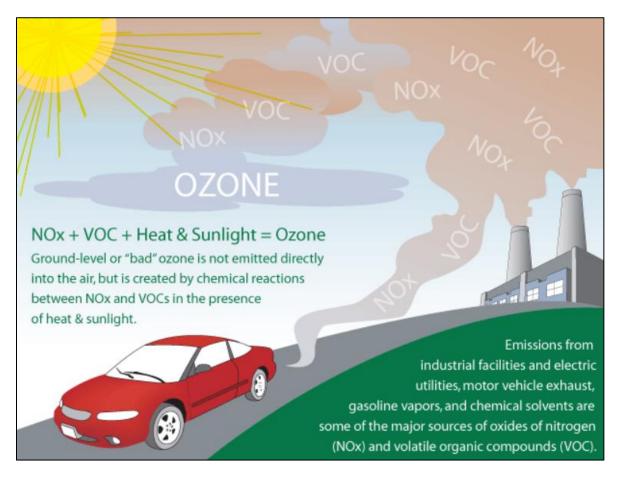


Figure 4-1. Good and Bad Ozone Ozone is good up here...Many popular consumer products like air conditioners

AND REFRIGERATORS INVOLVE **CFC**S OR HALONS DURING EITHER MANUFACTURING OR USE.

OZONE IS BAD DOWN HERE... CARS, TRUCKS, POWER PLANTS AND FACTORIES ALL EMIT AIR POLLUTION THAT FORMS GROUND-LEVEL OZONE, A PRIMARY COMPONENT OF SMOG. Source: USEPA AirNow

Figure 4-2 Ozone Formation

Source: USEPA. https://airnow.gov/index.cfm?action=aqibasics.ozone

HEALTH AND ENVIRONMENTAL EFFECTS

Ozone can irritate the entire respiratory tract. Repeated exposure to ozone pollution may cause permanent damage to the lungs. Even when ozone is present at low levels, inhaling it can trigger a variety of health problems including chest pains, coughing, nausea, throat irritation, and congestion. Ozone also can aggravate other medical conditions such as bronchitis, heart disease, emphysema, and asthma, and can reduce lung capacity. People with pre-existing respiratory ailments are especially prone to the effects of ozone. For example, asthmatics affected by ozone may have more frequent or severe attacks during periods when ozone levels are high. Children are at special risk for ozone-related problems. They breathe more air per pound of body weight than adults, and ozone can impact the development of their immature respiratory systems. They tend to be active outdoors during the summer when ozone levels are at their highest. Anyone who spends time outdoors in the summer can be affected, and studies have shown that even healthy adults can experience difficulty in breathing when exposed to ozone. Anyone engaged in strenuous outdoor activities, such as jogging, should limit activity to the early morning or late evening hours on days when ozone levels are expected to be high.

Ground-level ozone damages plant life and is responsible for 500 million dollars in reduced crop production in the United States each year. It interferes with the ability of plants to produce and store food, making them more susceptible to harsh weather, disease, insects, and other pollutants. It damages the foliage of trees and other plants, sometimes marring the landscape of cities, national parks and forests, and recreation areas. The black areas on the tulip poplar leaf shown in Figure 4-3 are damage caused by exposure to ground-level ozone.

AMBIENT AIR QUALITY STANDARDS

National and state air quality standards for ground-level ozone were first promulgated in 1971. There are both primary standards, which are set to provide public health protection

Figure 4-3 Leaf Damage Caused by Ozone

https://www.epa.gov/sites/production/files/styles/large/public/2015-06/tulippoplarleafdamage.jpg

(including protecting the health of sensitive populations such as asthmatics, children, and the elderly), and secondary standards, which are based on welfare effects (such as damage to trees, crops and materials). For ground-level ozone, the primary and secondary National Ambient Air Quality Standards (NAAQS) are the same (see Table 4-1). USEPA must periodically review the NAAQS to determine if they are sufficiently protective of public health based on the latest studies. In 1997, the 0.08 parts per million (ppm) 8-hour average daily maximum ozone NAAQS was changed to 0.075 ppm. In October 2015 the 8-hour ozone NAAQS was lowered once again, to 0.070 ppm, effective in 2016. New Jersey also has a primary 1-hour standard of 0.12 ppm.

Compliance with a NAAQS is based on meeting the design value, the actual statistic that determines whether the standard is being met. For ozone, calculating the design value is a two-step process using data from the most recent three years. The first step involves determining the fourth-highest daily maximum 8-hour average concentration for each monitoring site in the state for each of the three years. The values for each site are then used to calculate a three-year average. If this value exceeds the NAAQS at any site in the state, the state is determined to be in nonattainment.

Table 4-1 National and New Jersey Ambient Air Quality Standards for Ozone Parts per Million (ppm)

Averaging Period	Туре	National	New Jersey
1-Hour	Primary		0.12 ppm
8-Hours	Primary & secondary	0.070 ppm	

OZONE MONITORING **N**ETWORK

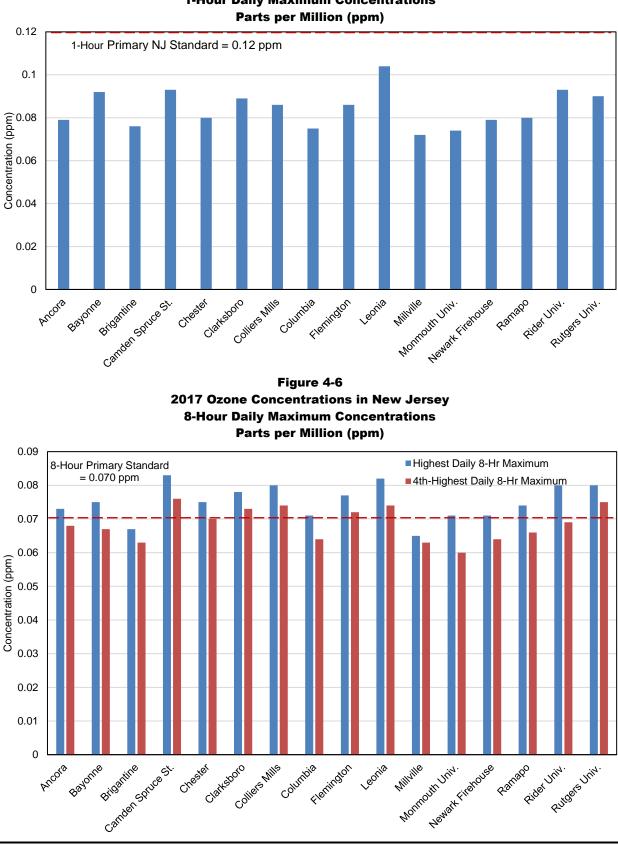
Ozone was measured at 16 monitoring stations in New Jersey during 2017 (see Figure 4-4). Of those 16 sites, ten operate year-round and six operate only during the ozone season, which was March 1st through October 31st. Bayonne, Brigantine, Camden Spruce Street, Chester, Columbia Wildlife Management Area (WMA), Flemington, Millville, Newark Firehouse, Rider University and Rutgers University operate year-round. Ancora, Clarksboro, Colliers Mills, Leonia, Monmouth University, and Ramapo sites operate only during the ozone season.

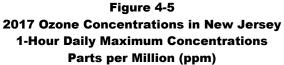
There is an ozone monitor at Washington Crossing State Park in Mercer County which is maintained and operated by USEPA. Data from the site is also used in determining New Jersey's NAAQS compliance status, although it is not presented here.



Figure 4-4 2017 Ozone Monitoring Network

OZONE LEVELS IN 2017


During the 2017 ozone season, all 16 New Jersey monitoring sites recorded levels above the 8-hour standard of 0.070 ppm. There were fourteen (14) days, between April 11 and September 24, on which the standard was exceeded somewhere in the state.


Table 4-2 presents all the USEPA-approved 2017 New Jersey ozone data. Of the 16 monitoring sites that operated during the 2017 ozone season, none recorded levels above the old (since-revoked) 1-hour standard of 0.12 ppm. The highest daily 1-hour concentration was 0.104 ppm, recorded at Leonia on June 30th. The last time the 1-hour standard was exceeded in New Jersey was in 2010. Figure 4-5 shows the one-hour data for each site.

The highest daily maximum 8-hour average concentration was 0.083 at Camden Spruce Street on May 18th. Seven sites in New Jersey (Camden Spruce Street, Chester, Clarksboro, Colliers Mills, Flemington, Leonia, and Rutgers University) were above the design value (4th-highest 8-hour daily maximum >0.070 ppm). Figure 4-6 presents each site's 8-hour daily maximum average values, and Figure 4-7 shows the 3-year average 8-hour design value for the 2015-2017 period.

		8-Hour Averages		
Monitoring Site	1-Hour Daily Maximum	Highest Daily Maximum	4th- Highest Daily Maximum	2015-2017 Average of 4th-Highest Daily Max.
Ancora	0.079	0.073	0.068	0.068
Bayonne	0.092	0.075	0.067	0.070
Brigantine	0.076	0.067	0.063	0.064
Camden Spruce St.	0.093	0.083	0.076	0.077
Chester	0.080	0.075	0.070	0.074
Clarksboro	0.089	0.078	0.073	0.069
Colliers Mills	0.086	0.080	0.074	0.073
Columbia	0.075	0.071	0.064	0.065
Flemington	0.086	0.077	0.072	0.072
Leonia	0.104	0.082	0.074	0.074
Millville	0.072	0.065	0.063	0.066
Monmouth University	0.074	0.071	0.060	0.068
Newark Firehouse	0.079	0.071	0.064	0.068
Ramapo	0.080	0.074	0.066	0.068
Rider University	0.093	0.080	0.069	0.071
Rutgers University	0.090	0.080	0.075	0.075

Table 4-22017 Ozone Concentrations in New JerseyParts per Million (ppm)

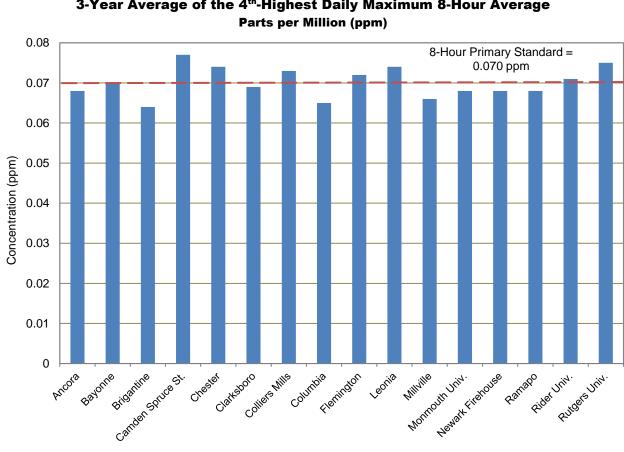
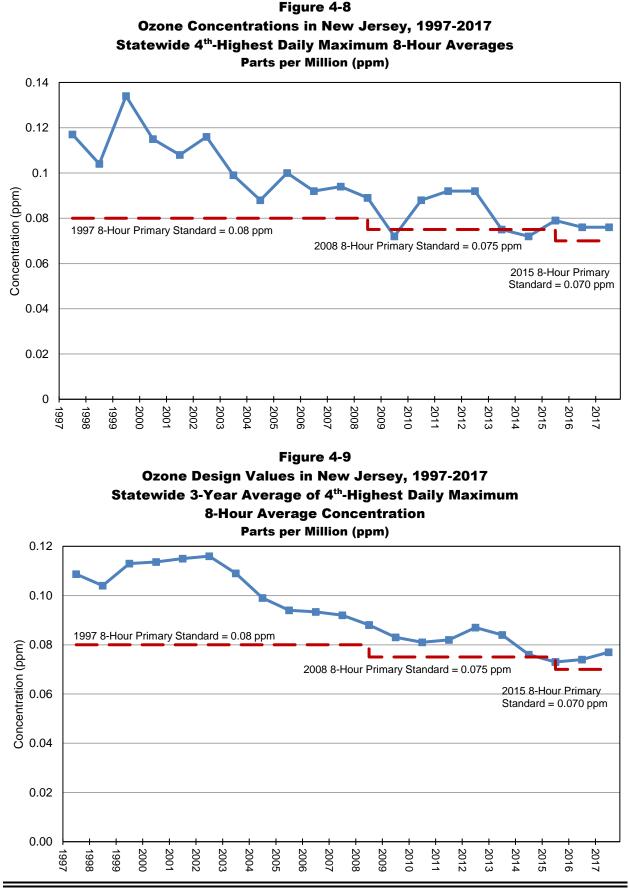



Figure 4-7 New Jersey Ozone Design Values for 2015-2017 3-Year Average of the 4th-Highest Daily Maximum 8-Hour Average Parts per Million (ppm)

OZONE TRENDS

Studies have shown that in order to lower ground-level ozone concentrations, emissions of VOCs and NOx must be reduced. Over the past couple of decades, this effort has resulted in a relatively steady decrease in ozone levels in New Jersey. The chart in Figure 4-8 shows the fourth-highest statewide 8-hour maximum average concentration recorded each year since 1997. In 2017, this value was 0.076 ppm (measured at Camden Spruce Street). In 2017, the design value, which is the three-year average of the 4th-highest maximum daily 8-hour concentration at any site statewide, was 0.077 ppm, as shown in Figure 4-9. This exceeds the 0.070 ppm NAAQS. Ozone levels in New Jersey are greatly impacted by emissions from upwind sources in other states, so the effort to reduce VOC and NOx emissions need to be implemented in regions beyond our state borders.

Ozone

2017 NJ Air Quality Report

OZONE NONATTAINMENT AREAS IN NEW JERSEY

The Clean Air Act requires that all areas of the country be evaluated for attainment or nonattainment for each of the NAAQS. The 1990 amendments to the Clean Air Act required that areas be further classified based on the severity of nonattainment. The classifications range from "marginal" to "extreme" and are based on the design values that determine whether an area meets the standard.

The state of New Jersey has been in nonattainment for the ozone NAAQS with the northern part of the state classified as being "moderate" and the southern part of the state classified as being "marginal." New Jersey's current classification with respect to the 2008 8-hour standard is shown in Figure 4-10.

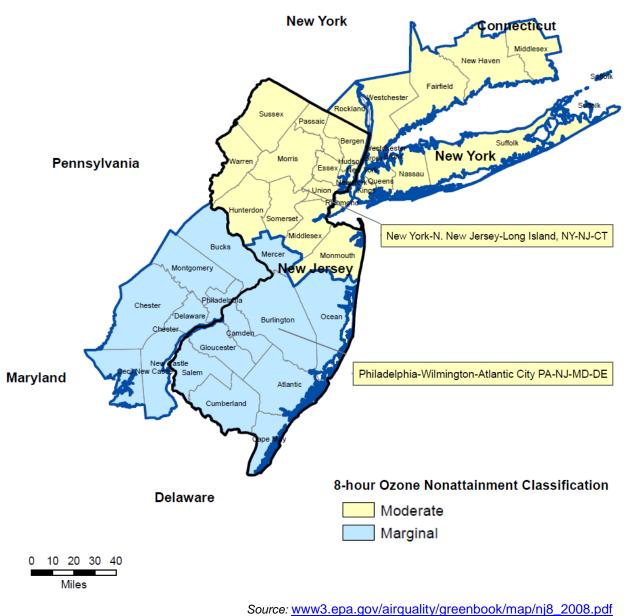


Figure 4-10 New Jersey 8-Hour Ozone Nonattainment Areas

REFERENCES

U.S. Environmental Protection Agency (USEPA) AirNow. Air Quality Guide for Ozone. <u>www.airnow.gov/index.cfm?action=pubs.aqiguideozone</u>. Accessed 5/18/18.

USEPA AirNow. Good Up High, Bad Nearby – What is Ozone? September 2014. <u>https://cfpub.epa.gov/airnow/index.cfm?action=gooduphigh.index</u>. Accessed 5/18/18.

USEPA. Nonattainment Areas for Criteria Pollutants (Green Book). <u>www.epa.gov/green-book</u>. Accessed 5/18/18.

USEPA. Ozone Pollution. <u>www.epa.gov/ozone-pollution</u>. Accessed 5/18/18.

2017 Particulate Matter

Summary

New Jersey Department of Environmental Protection

SOURCES

Particulate air pollution is a complex mixture of organic and inorganic substances in the atmosphere, present as either liquids or solids. Particulates may be as large as 70 microns in diameter or smaller than 1 micron in diameter. Most particulates are small enough that individual particles are undetected by the human eye. Particulates may travel hundreds of miles from their original sources, suspended in the atmosphere, before falling to the ground.

Particulate pollution is categorized by size, measured in microns (one millionth of a meter, also known as a micrometer). Particulates with diameters of 2.5 microns or less are considered "fine particulate matter," referred to as PM_{2.5} (Figure 5-1). Particulates with diameters of 10 microns or less are "inhalable particulate matter," and are referred to as PM₁₀. "Coarse particulate matter" is between 2.5 and 10 microns in (PM_{coarse}). "Total suspended size particulate" (TSP) refers to all suspended particulates, including the largest ones.

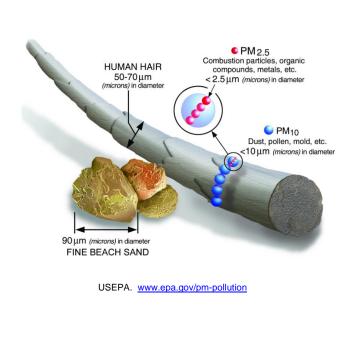


Figure 5-1

Size Comparisons for PM Particles

Particulates can occur naturally or can be man-made. Examples of naturally-occurring particles are windblown dust and sea salt. Man-made particulates, which come from sources such as fossil fuel combustion and industrial processes, can be categorized as either primary particulates or secondary particulates. Primary particulates are directly emitted from their sources, while secondary particulates form in the atmosphere through reactions of gaseous emissions.

HEALTH AND ENVIRONMENTAL EFFECTS

The size of particles is directly linked to their potential for causing health problems. Fine particles ($PM_{2.5}$) pose the greatest health risk. They can get deep into the lungs and some may even get into the bloodstream. Exposure to these particles can affect a person's lungs and heart. They can lead to premature death in people with heart or lung disease, can cause heart attacks, decrease lung function, and aggravate asthma. PM_{10} is of less concern, although it is inhalable and can irritate a person's eyes, nose, and throat.

Particulates of all sizes have an impact on the environment. PM is the major cause of reduced visibility in many parts of the United States. Figure 5-2a provides an example of reduced visibility due to particulate pollution, recorded by the Camnet visibility camera at Brigantine (<u>www.hazecam.net</u>) which focuses on the Atlantic City skyline. Figure 5-2b is an example of a day with low particulate pollution and good visibility. Airborne particles can also impact vegetation and aquatic ecosystems, and can cause damage to paints and building materials.

AMBIENT AIR QUALITY STANDARDS

The U.S. Environmental Protection Agency (USEPA) first established National Ambient Air Quality Standards (NAAQS) for particulate matter in 1971. It set primary (health-based) and secondary (welfare-based) standards for total suspended particulate (TSP), which included PM up to about 25 to 45 micrometers. Over the years, new health data shifted the focus toward smaller and smaller particles. In 1987, USEPA replaced the TSP standards with standards for PM₁₀. The 24-hour PM₁₀ primary and secondary standards were set at 150 μ g/m³. Ten years later, USEPA began regulating PM_{2.5}. The annual PM_{2.5} primary and secondary standards were set at 15.0 μ g/m³ until 2013, when the primary annual standard was lowered to 12.0 μ g/m³. A 24-hour PM_{2.5} standard of 65 μ g/m³.was promulgated in 1997, then lowered in 2006 to 35 μ g/m³. Table 5-1 provides a summary of the current particulate matter standards.

Compliance with the standards is determined by calculating a statistic called the design value. For the annual $PM_{2.5}$ NAAQS, the design value is the highest statewide 3-year average of each site's annual average concentrations. For the 24-hour NAAQS, the 98th percentile of the 24-hour concentrations for each monitoring site must be averaged for the three most recent years. The highest site's value is the state's design value. For PM_{10} , the design value is the second-highest 24-hour average concentration in a given year.

Table 5-1				
National Ambient Air Quality Standards for Particulate Matter				
Micrograms Per Cubic Meter (μg/m³)				

Pollutant	Averaging Period	Туре	Level
	Annual	Primary	12.0 μg/m³
Fine Particulate (PM _{2.5})	Annual	Secondary	15.0 μg/m³
	24-Hours	Primary & Secondary	35 μg/m³
Inhalable Particulate (PM ₁₀)	24-Hours	Primary & Secondary	150 μg/m³

PARTICULATE MONITORING NETWORK

The New Jersey Department of Environmental Protection (NJDEP) particulate monitoring network in 2017 consisted of twenty-two PM_{2.5} monitoring sites and three PM₁₀ monitoring sites. Criteria pollutant monitors must meet strict USEPA requirements in order to determine compliance with the NAAQS. NJDEP uses three different methods to measure particulate.

Eighteen PM_{2.5} sites and the three PM₁₀ sites use filter-based samplers, which pull a predetermined amount of air through PM_{2.5} or PM₁₀ size-selective inlets for a 24-hour period. The filters are weighed before and after sampling under controlled environmental conditions to determine the concentration of the captured particles. This filter-based method has for years been designated as the Federal Reference Method (FRM) for particulate matter compliance determination.

In order to provide real-time hourly data to the public (through the Air Quality Index at <u>www.njaqinow.net</u>), NJDEP has also been using particulate monitors that operate continuously. Eleven sites in New Jersey use Beta Attenuation Monitors (BAM), which measure the loss of intensity (attenuation) of beta particles due to absorption by PM_{2.5} particles collected on a filter tape. These monitors are classified by USEPA as Federal Equivalent Methods (FEM) for PM_{2.5}, and can be used to determine compliance with the NAAQS. One site, Rahway, uses a Tapered Element Oscillating Microbalance (TEOM) analyzer, which is not a Federal Equivalent Method (FEM). TEOM analyzers collect a sample of PM_{2.5} on an oscillating filter and determine the concentration based on the change in the frequency at which the filter oscillates. This instrument will be replaced with an FEM monitor in 2018.

At one time, the NJDEP PM₁₀ monitoring network consisted of more than twenty sampling sites. Due to many years of low concentrations and the shift in emphasis to PM_{2.5} monitoring, the network has been reduced to only three sites, the Camden Resource Recovery Facility (RRF), Jersey City Firehouse, and Newark Firehouse. PM₁₀ samples are taken once every six days at Camden and Jersey City, and every three days at Newark.

Five monitoring stations are part of the national Chemical Speciation Network (CSN). They use a separate 24-hour filter-based PM_{2.5} sampler to determine the concentrations of the chemical analytes that make up the particle sample. The sample is collected on three types of filter media which are subsequently analyzed using ion chromatography (IC), X-ray fluorescence (XRF), and Thermal Optical Transmittance (TOT). CSN monitoring takes place at the Camden Spruce Street, Chester, Elizabeth Lab, Newark Firehouse and Rutgers University monitoring stations. CSN data can be found in Appendix B of the Air Quality Summaries.

Figure 5-3 shows the locations of all the particulate monitors in New Jersey. Because of proposed construction at the Gibbstown monitoring station, in August of 2017 the it was shut down and the $PM_{2.5}$ monitor was moved to Clarksboro.

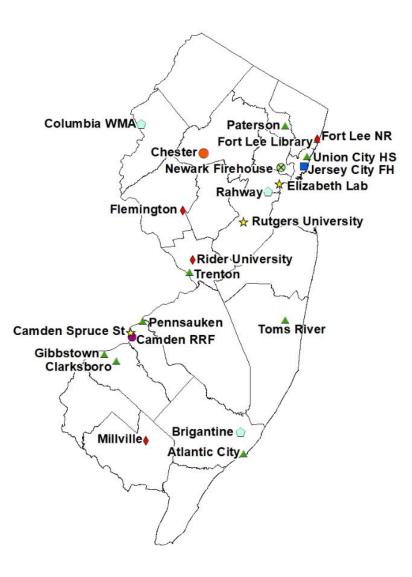


Figure 5-3 2017 Particulate Monitoring Network

Particulate Network

- A PM2.5 Filter
- PM2.5 Continuous
- PM2.5 Filter & PM2.5 Continuous
- PM2.5 Filter, PM2.5 Continuous & Speciation
- PM2.5 Filter & Speciation
- PM2.5 Filter, PM2.5 Continuous, Speciation & PM10
- PM2.5 Filter, PM2.5 Continuous & PM10
- PM10

FINE PARTICLE (PM_{2.5}) LEVELS IN 2017

PM2.5 LEVELS FOR FILTER-BASED FRM MONITORS

The annual mean concentrations of $PM_{2.5}$ measured by the eighteen filter-based FRM samplers ranged from 5.85 µg/m³ at the Brigantine monitoring site to 9.58 µg/m³ at the Elizabeth Lab station. The highest 24-hour concentrations ranged from 18.0 µg/m³ at Chester to 30.4 µg/m³ at Toms River. Table 5-2 shows the 2017 annual mean, highest and 98th percentile 24-hour concentrations, as well as the number of valid samples collected. The data is also shown graphically in Figures 5-4 and 5-5. Four sites (Elizabeth Lab, Jersey City Firehouse, Toms River and Trenton) operate every day. The other fourteen sites (Atlantic City, Brigantine, Camden Spruce Street, Chester, Clarksboro, Columbia, Fort Lee Library, Gibbstown, Newark Firehouse, Paterson, Pennsauken, Rahway, Rutgers University, and Union City High School) take a sample every third day. In 2017, no FRM sites were in violation of either the annual NAAQS of 12.0 µg/m³ or the 24-hour NAAQS of 35 µg/m³.

Table 5-2 2017 PM_{2.5} Concentrations in New Jersey Annual and 24-Hour Averages (FRM) Micrograms Per Cubic Meter (μg/m³)

	Number of Annual	24-Hour	24-Hour Average	
Monitoring Site	Samples	amples Average		98 th %-ile
Atlantic City	113	6.93	23.3	17.6
Brigantine	115	5.85	18.5	13.5
Camden Spruce Street	112	9.31	28.1	22.5
Chester	116	5.90	18.0	13.6
Clarksboro*	50	7.95	21.7	21.7
Columbia	106	8.19	23.6	18.3
Elizabeth Lab	336	9.58	29.1	20.8
Fort Lee Library	118	7.30	18.8	16.3
Gibbstown*	63	7.27	18.8	17.4
Jersey City Firehouse	349	8.14	23.3	18.5
Newark Firehouse	110	7.57	19.1	15.3
Paterson	117	7.76	20.3	17.7
Pennsauken	118	7.91	19.8	18.2
Rahway	112	7.76	21.3	17.2
Rutgers University	120	6.84	18.3	17.5
Toms River	320	6.74	30.4	16.4
Trenton Library	345	7.53	23.7	18.0
Union City High School	118	7.81	20.7	17.8

*In August 2017 the PM2.5 sampler from Gibbstown was moved to Clarksboro. Neither site collected enough data to calculate a valid annual mean concentration.

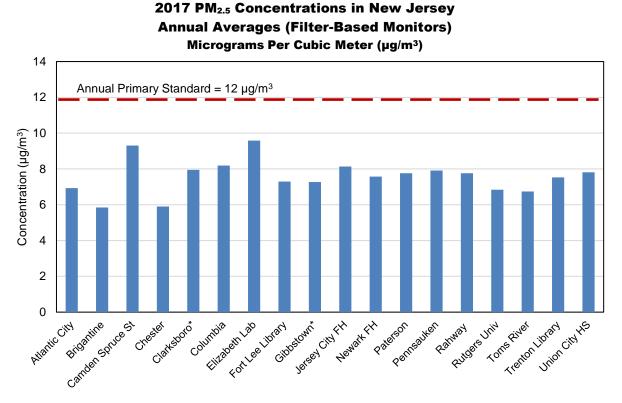
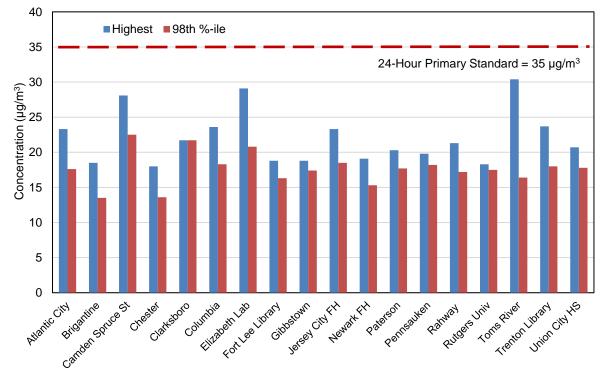



Figure 5-4

Figure 5-5 2017 PM_{2.5} Concentrations in New Jersey 24-Hour Averages (Filter-Based Monitors) Micrograms Per Cubic Meter (μg/m³)

PM_{2.5} Levels for Continuous FEM Monitors

New Jersey's continuous $PM_{2.5}$ monitoring network consists of twelve sites: Brigantine, Camden Spruce Street, Columbia, Elizabeth Lab, Flemington, Fort Lee Near Road, Jersey City Firehouse, Millville, Newark Firehouse, Rahway, Rider University, and Rutgers University. One-minute readings are transmitted to a central computer in Trenton, where they are averaged every hour and automatically updated on the NJDEP website at <u>www.njaqinow.net</u>. Table 5-3 presents the annual mean, highest 24-hour, and 98th percentile 24-hour values from these sites for 2017. Figures 5-6 and 5-7 show the same data in graphs. In 2017 there were four exceedances of the 24-hour standard at Camden Spruce St. and one at the Elizabeth Lab (see the Air Quality Index Summary for details). However, the 24-hour 98th percentile values, 27.7 μ g/m³ at Camden and 22.1 μ g/m³ at Elizabeth Lab, which are used to determine compliance with the NAAQS, were below primary standard of 35 μ g/m³.

Table 5-3
2017 PM _{2.5} Concentrations in New Jersey
Annual and 24-Hour Averages (Continuous Monitors)
Micrograms Per Cubic Meter (µg/m³)

- -

	Annual	24-Hour Average		
Monitoring Site	Average	Highest	98 th %-ile	
Brigantine	7.81	18.0	15.7	
Camden Spruce Street	11.87	44.2	27.7	
Columbia	8.19	31.6	19.6	
Elizabeth Lab	10.29	35.6	22.1	
Flemington	8.04	25.8	17.5	
Fort Lee Near Road	8.88	25.9	18.2	
Jersey City Firehouse	10.27	25.1	20.9	
Millville	7.89	21.8	16.5	
Newark Firehouse	8.59	24.7	19.2	
Rahway	8.10	18.7	16.4	
Rider University	8.08	26.0	17.2	
Rutgers University	8.33	26.2	18.8	

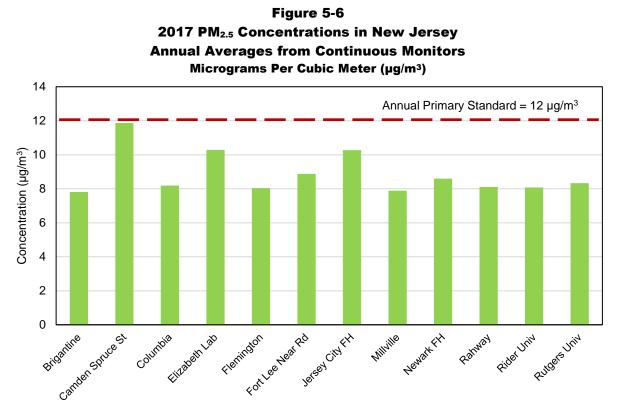
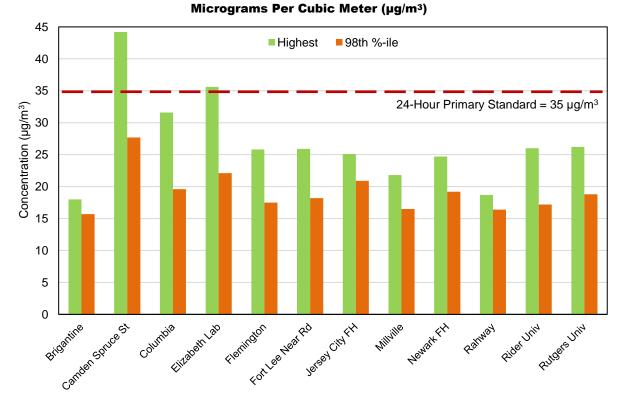



Figure 5-7 2017 PM_{2.5} Concentrations in New Jersey 24-Hour Averages from Continuous Monitors

PM_{2.5} DESIGN VALUES

Table 5-4 and Figures 5-8 and 5-9 show the PM_{2.5} design values for each of the New Jersey monitors, as determined by USEPA. Some sites have both a filter-based FRM monitor and a continuous FEM monitor. At sites with both, the data from the FRM monitor usually takes precedence, and FEM data is added in for periods when there is no FRM data.

Seven sites do not have complete three-year data sets, but their USEPA design value estimates are included here anyway (marked with an asterisk). As mentioned before, Gibbstown was shut down mid-2017 and its monitor moved to Clarksboro. Flemington, Millville, Rider University, Rutgers University, and Union City High School are missing some or all 2015 PM_{2.5} data.

Table 5-4New Jersey PM2.5 Design Values for 2015-20173-Year Average of the Annual Average Concentrations& 98th Percentile 24-Hour Average ConcentrationsMicrograms Per Cubic Meter (µg/m3)

		015-2017) erage
Monitoring Site	Annual	98th %-ile 24-Hour
Atlantic City	7.3	16
Brigantine	6.8	15
Camden Spruce Street	10.3	25
Chester	6.4	16
Clarksboro*	7.9	22
Columbia	8.6	22
Elizabeth Lab	9.7	23
Flemington*	8.3	17
Fort Lee Library	8.5	21
Fort Lee Near Road	10.1	22
Gibbstown*	7.8	18
Jersey City Firehouse	8.4	21
Millville*	7.9	17
Newark Firehouse	8.6	20
Paterson	8.0	19
Pennsauken	8.3	19
Rahway	8.2	20
Rider University*	8.3	17
Rutgers University*	8.3	19
Toms River	6.9	18
Trenton Library	7.7	20
Union City High School*	8.2	18

*3-year data set is incomplete.

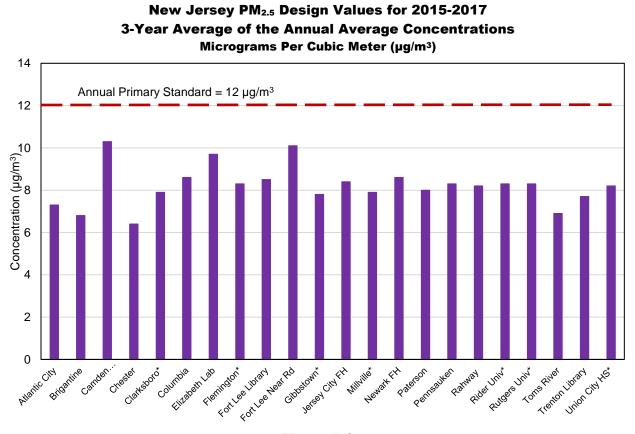
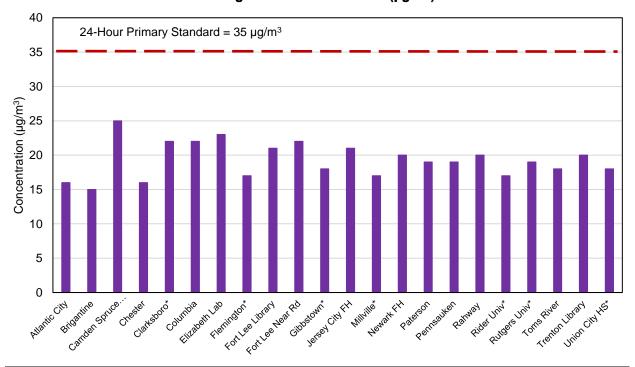
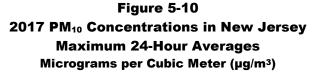



Figure 5-8

Figure 5-9 New Jersey PM_{2.5} Design Values for 2015-2017 3-Year Average of the 98th Percentile of the 24-Hour Average Concentrations Micrograms Per Cubic Meter (µg/m³)


Particulate Matter

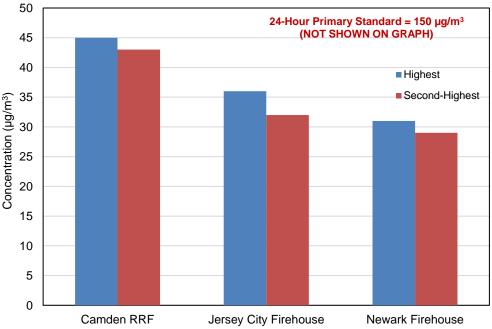
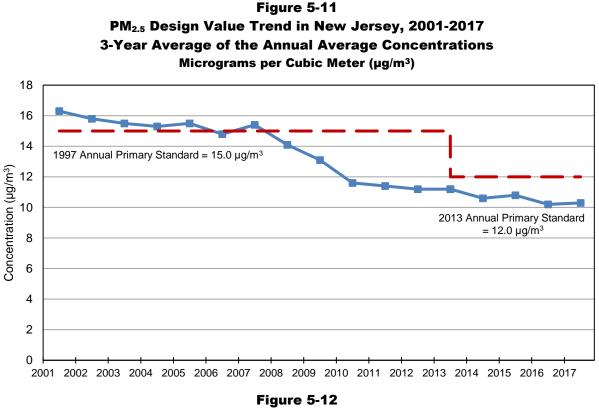
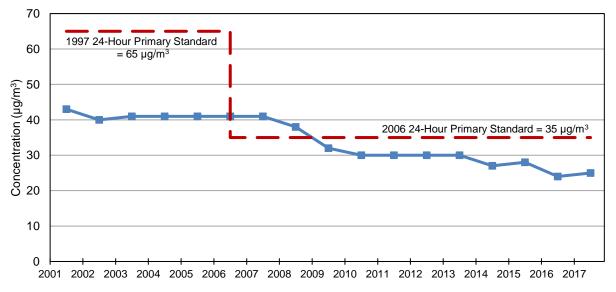

INHALABLE PARTICULATE (PM₁₀) LEVELS IN 2017

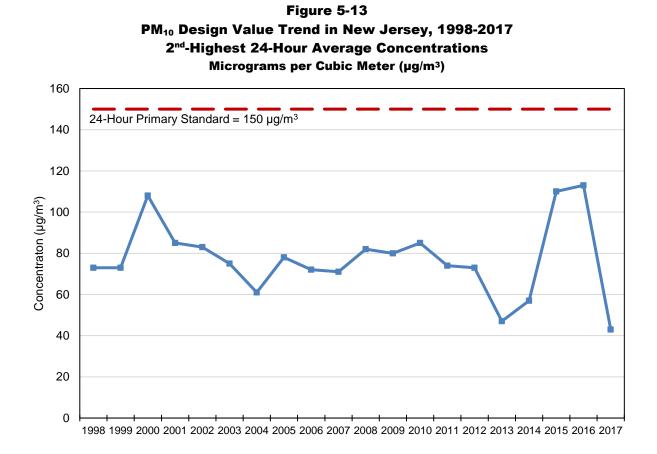
Table 5-5 shows 2017 values for each of the New Jersey PM_{10} monitors. The highest and second-highest 24-hour concentrations, as well as the annual average, are presented. All areas of the state are in attainment for the 24-hour standard of 150 μ g/m³, as can be seen in Figure 5-10. The standard is based on the second-highest 24-hour value. In 2017, the highest PM₁₀ values were measured at the Camden RRF site.

Table 5-5 2017 PM₁₀ Concentrations in New Jersey 24-Hour and Annual Averages Micrograms Per Cubic Meter (μg/m³)


	Number		24-Hour Average	
Monitoring Site	of Average		Highest	Second- Highest
Camden RRF	56	20.1	45	43
Jersey City Firehouse	56	15.4	36	32
Newark Firehouse	117	13.9	31	29



PARTICULATE TRENDS


The PM_{2.5} monitoring network in New Jersey has been in place since 1999. Figures 5-11 and 5-12 show the trend in the design values (3-year averages) since 2001, as well as changes to the NAAQS. Years of data show a noticeable decline in fine particulate concentrations.

PM_{2.5} Design Value Trend in New Jersey, 2001-2017 3-Year Average of the 98th Percentile 24-Hour Average Concentrations Micrograms per Cubic Meter (µg/m³)

The PM₁₀ design value trend is shown in Figure 5-13. The increase in concentration in 2015 and 2016 occurred at the Camden Spruce Street monitor, during a period of major road construction.

REFERENCES

Camnet. Realtime Air Pollution & Visibility Monitoring. <u>www.hazecam.net</u>. Accessed 8/15/18.

U.S. Environmental Protection Agency (USEPA). 2012 National Ambient air Quality Standards (NAAQS) for Particulate Matter (PM). <u>www.epa.gov/pm-pollution/2012-national-ambient-air-quality-standards-naaqs-particulate-matter-pm</u>. Accessed 8/15/18.

USEPA. Health and Environmental Effects of Particulate Matter (PM). <u>www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm</u>. Accessed 8/15/18.

USEPA. Particulate Matter (PM) Pollution. <u>www.epa.gov/pm-pollution</u>. Accessed 8/15/18.

USEPA Region 1. How Does PM Affect Human Health? <u>www3.epa.gov/region1/airquality/pm-human-health.html</u>. Accessed 8/15/18.

2017 Nitrogen Dioxide Summary

New Jersey Department of Environmental Protection

SOURCES

Figure 6-1 2017 New Jersey NOx Projected Emissions

Nitrogen dioxide (NO₂) is a reddish-brown highly reactive gas that is formed in the air through the oxidation of nitric oxide (NO). NO2 is used by regulatory agencies as the indicator for the group of gases known as nitrogen oxides (NOx). These gases are emitted from motor vehicle exhaust, combustion of coal, oil or natural gas, and industrial processes such as welding, electroplating, and dynamite blasting. Although most NOx is emitted as NO, it is readily converted to NO₂ in the atmosphere. In the home, gas stoves and heaters produce substantial amounts of nitrogen dioxide. When NO₂ reacts with other chemicals it can form ozone, particulate matter, and other pollutant compounds. A pie chart summarizing the major sources of NOx in New Jersey in 2017 is shown in Figure 6-1.

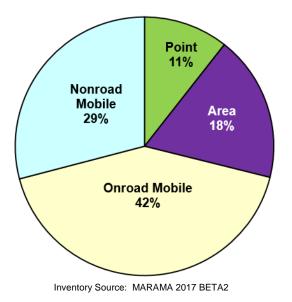
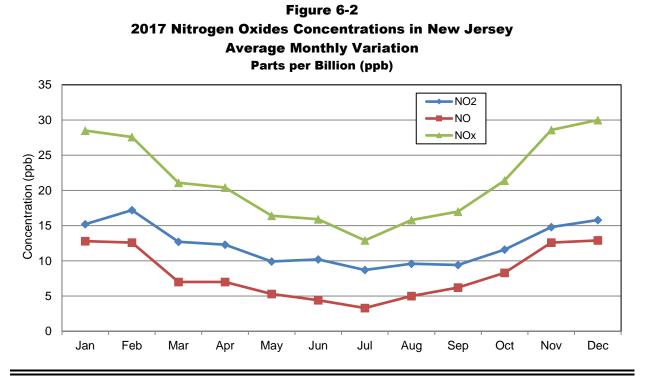
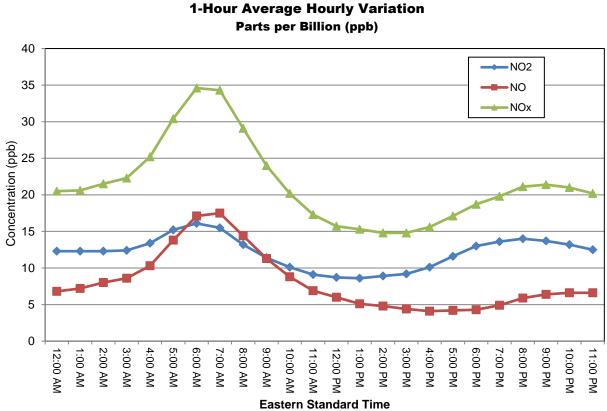




Figure 6-2 shows that NOx concentrations tend to

be higher in the winter than in the summer. This is due in part to building heating, and to weather conditions that are more prevalent in the colder months of the year, such as lighter winds that result in poorer local dispersion conditions.

Because much of the NOx in the air is emitted by motor vehicles, concentrations tend to peak during the morning and afternoon rush hours. This is shown in Figure 6-3.

Figure 6-3 2017 Nitrogen Oxides Concentrations in New Jersey 1-Hour Average Hourly Variation Parts per Billion (ppb)

HEALTH AND ENVIRONMENTAL EFFECTS

Short-term exposures to low levels of nitrogen dioxide may aggravate pre-existing respiratory illnesses and cause respiratory illnesses in children, people with asthma, and the elderly. Symptoms of low-level exposure to NO and NO₂ include irritation to eyes, nose, throat and lungs, coughing, shortness of breath, tiredness and nausea. Long-term exposures to NO₂ may increase susceptibility to respiratory infection and may cause permanent damage to the lung. Studies show a connection between breathing elevated short-term NO₂ concentrations and increases in hospital emergency department visits and hospital admissions for respiratory issues, especially asthma. Individuals who spend time on or near major roadways can experience high short-term NO₂ exposures.

Nitrogen oxides contribute to a wide range of environmental problems. Chemical reactions in the air form both ozone and particulate matter. Nitrate particles make the air hazy and impair visibility, and contribute to nutrient pollution in coastal waters, resulting in eutrophication. NO₂ also reacts with water and oxygen to form nitric acid, a component of acid rain, which causes acidification of freshwater bodies and harms sensitive ecosystems such as lakes and forests.

AMBIENT AIR QUALITY STANDARDS

There are two types of National Ambient Air Quality Standards (NAAQS) established by the U.S. Environmental Protection Agency (USEPA). Primary standards are set to provide public health protection, including protecting the health of sensitive populations such as asthmatics, children, and the elderly. Secondary standards provide public welfare protection, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings. A 1-hour primary standard for NO₂ of 100 parts per billion (ppb) was promulgated in 2010. The primary and secondary annual NAAQS for NO₂ are the same, a calendar year average concentration of 53 ppb. The annual New Jersey Ambient Air Quality Standards (NJAAQS) are identical to the NAAQS, except that micrograms per cubic meter (μ g/m³) are the standard units and the averaging time is any 12-month period (a running average) instead of a calendar year. Table 6-1 presents a summary of the NO₂ standards.

Table 6-1National and New Jersey Ambient Air Quality Standards for Nitrogen Dioxide (NO2)Parts per Billion (ppb)Parts per Million (ppm)

Micrograms per Cubic Meter (µg/m³)

Averaging Period	Туре	National	New Jersey
1-Hour	Primary	100 ppb (0.100 ppm)	
Annual	Primary & secondary	53 ppb (0.053 ppm)	
12-Month	Primary & secondary		100 µg/m³ (0.053 ppm)

A state or other designated area is in compliance with a NAAQS when it meets the design value. For the annual standard, the annual average is the design value. However, for the 1-hour NO₂ standard, the NAAQS is met when the 3-year average of the 98th percentile of the daily maximum 1-hour NO₂ concentrations is less than 100 ppb. This statistic is calculated by first obtaining the maximum 1-hour average NO₂ concentrations for each day at each monitor. Then the 98th percentile value of the daily maximum NO₂ concentrations must be determined for the current year, and for each of the previous two years. Finally, the average of these three annual 98th-percentile values is the design value.

NO₂ MONITORING NETWORK

NJDEP monitored NO₂ levels at ten locations in 2017. The monitoring stations are Bayonne, Camden Spruce Street, Chester, Columbia, Elizabeth Lab, Fort Lee Near Road, Jersey City, Millville, Newark Firehouse, and Rutgers University. These sites are shown in Figure 6-4.

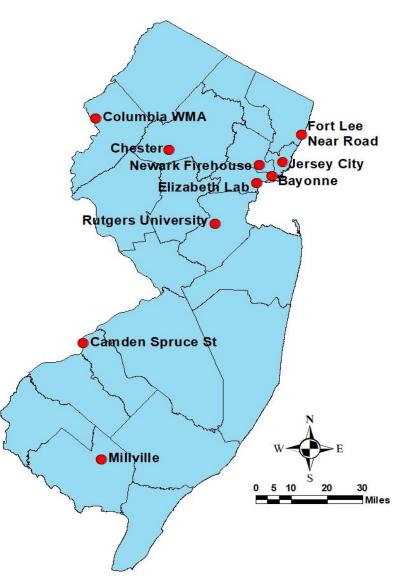


Figure 6-4 2017 Nitrogen Dioxide Monitoring Network

NO₂ Levels In 2017

None of New Jersey's monitoring sites exceeded the 1-hour or annual NO₂ ambient air standards in 2017. Fort Lee Near Road had the highest daily maximum 1-hour concentration at 92 ppb (see Table 6-2 and Figure 6-5). The 2017 98th-percentile values for each monitoring station are also shown in Table 6-2 and Figure 6-5. The design value for NO₂, which determines whether or not there is a violation of the NAAQS, is actually the 3-year average of the 98th-percentile of the 1-hour daily maximum concentrations. The 2015-2017 design value for each site is given in Table 6-2 and Figure 6-7. The site with the highest design value for 2015-2017 was Fort Lee Near Road, with 63 ppb, although the 2015 data does not meet USEPA completeness criteria. The design values for Jersey City, Millville, and Rutgers University stations also have incomplete data for the three-year period (see Table 6-2 footnotes).

Table 6-22017 Nitrogen Dioxide Concentrations in New Jersey1-Hour Averages

Parts per Billion (ppb)					
	1-Hour Average (ppb)				
Monitoring Site	Daily Maximum	98th Percentile	2015-2017 98 th -%ile 3-Yr Avg		
Bayonne	77	56	57		
Camden Spruce St.	53	46	50		
Chester	38	33	31		
Columbia	52	44	48		
Elizabeth Trailer	79	59	62		
Fort Lee Near Road*	92	67	63		
Jersey City*	70	53	52		
Millville*	45	33	33		
Newark Firehouse	75	56	57		
Rutgers University*	53	41	43		

1-Hour Averages

*The following sites do not have three complete years of data for 2015 to 2017, and do not meet the design value criteria for NO_2 :

- Fort Lee Near Road began operating in 2014, but data for 2015 was incomplete.
- Jersey City began operating January 2016.
- Millville was temporarily shut down February 2016 to June 2016.
- Rutgers University was temporarily shut down for site renovations April 2015 to June 2015.

Figure 6-5 2017 Nitrogen Dioxide Concentrations in New Jersey Daily Maximum 1-Hour Values Parts per Billion (ppb)

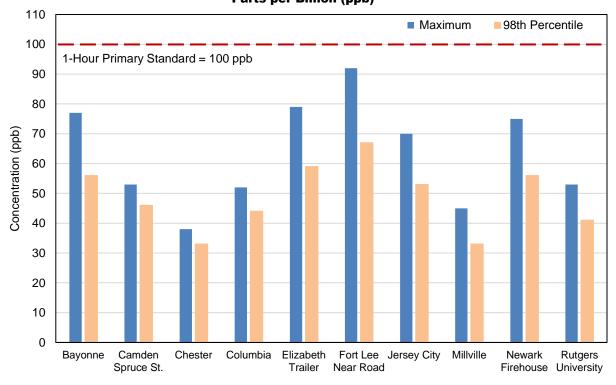
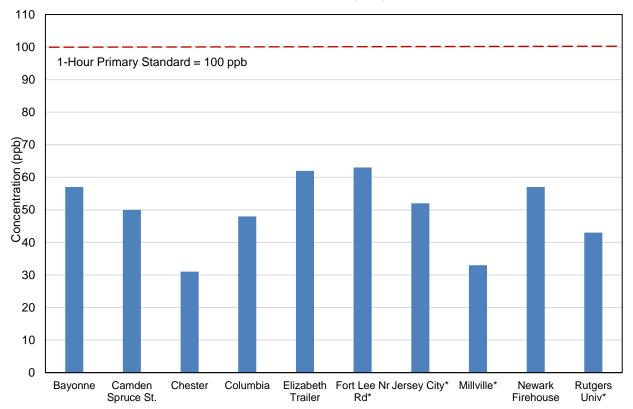



Figure 6-7 2017 Nitrogen Dioxide Design Values in New Jersey 3-Year Average of the 98th Percentile Daily Maximum 1-Hour Concentrations (2015-2017) Parts per Billion (ppb)

*Note: 2015-2017 data for Fort Lee Near Road, Jersey City, Millville, and Rutgers University sites are incomplete and do not meet design value requirements. See Table 6-2 for details.

In order to meet the annual NAAQS for NO₂, the calendar-year average (January 1 to December 31) must be less than or equal to 53 ppb, rounded to no more than one decimal place. The NJAAQS is also 53 ppb, but it is compared to the maximum running 12-month average (of any twelve consecutive months in the year). As shown in Table 6-2 and Figure 6-8, the highest calendar-year average of 20 ppb occurred at the Jersey City monitoring station, located on J.F.Kennedy Boulevard near Journal Square. The highest running 12-month average NO₂ concentration, also 20 ppb, was measured at both the Elizabeth Lab site, located at Exit 13 of the New Jersey Turnpike, and the Jersey City site. These values are well below the standards.

Table 6-22017 Nitrogen Dioxide Concentrations in New JerseyAnnual (12-Month) AveragesDerte non Billion (unit)

Parts per Billion (ppb)				
	12-Month Average (ppb)			
Monitoring Site	Calendar Maximu Year Runnin			
Bayonne	15	16		
Camden Spruce Street	12	12		
Chester	3	3		
Columbia	10	10		
Elizabeth Lab	19	20		
Fort Lee Near Road	18	18		
Jersey City	20	20		
Millville	6	6		
Newark Firehouse	15	15		
Rutgers University	8	8		

Figure 6-8 2017 Nitrogen Dioxide Design Values in New Jersey Annual (12-Month) Average Concentrations Parts per Billion (ppb)

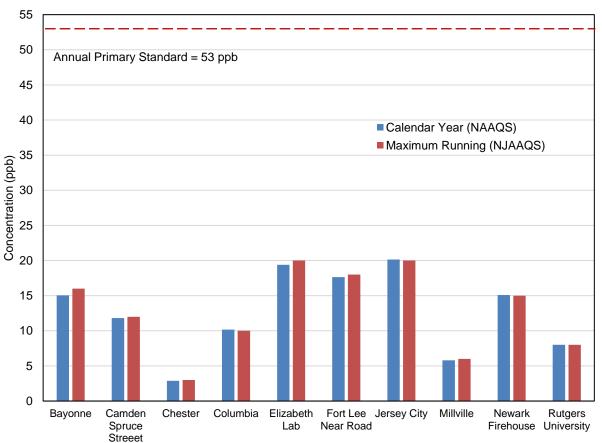
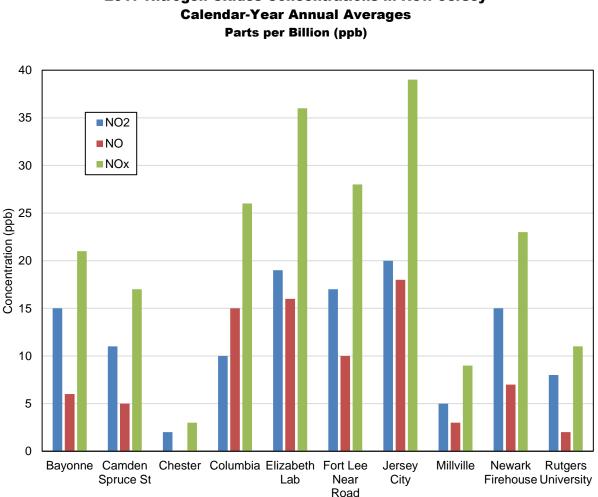
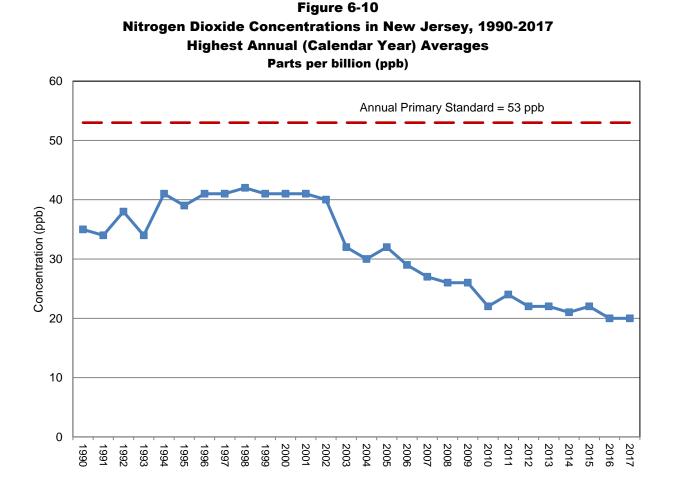
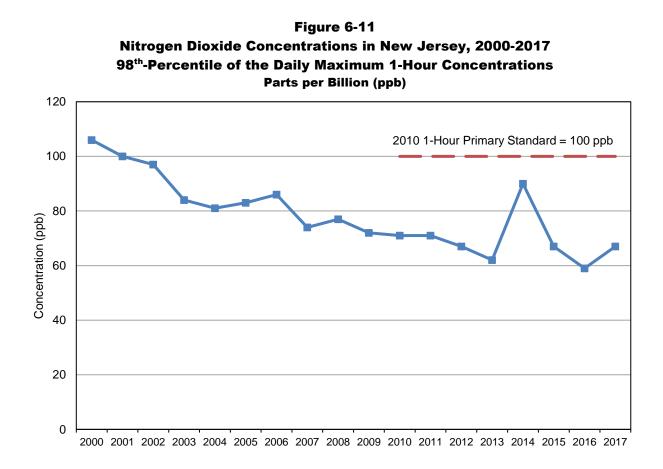



Figure 6-9 shows the calendar-year annual average concentrations of NO₂, NO and NOx at each New Jersey monitoring site. The stations that measure NO₂ concentrations also measure NO and NOx, even though there are no ambient air standards for them. NOx levels are approximately (not exactly) the sum of the NO₂ and NO concentrations. The concentration of NO tends to be lower than NO₂, because it quickly reacts with other air pollutants (particularly ozone) after it is emitted from a source, and converts to NO2. The higher NO concentration at the Columbia monitor is believed to result from its proximity to Interstate Highway 80. The road is a significant source of NO emissions from vehicles, but the expected conversion of NO to NO₂ is probably hindered by the area's relatively low levels of other pollutants.


Note: The annual average concentration of NO at Chester was 0 ppb.


NO₂ TRENDS

Routine monitoring for NO_2 in New Jersey began in 1966. The last year in which the annual average NO_2 concentration exceeded the NAAQS was 1974. The graph of NO_2 levels in Figure 6-10 shows the highest statewide annual average concentrations recorded from 1990 to 2017. Although NO_2 concentrations are well within the NAAQS, there is still a great deal of concern about the role of nitrogen oxides in the formation of other pollutants, most notably ozone and fine particles. Both of these pollutants still occasionally reach problematic levels in the northeastern United States. Efforts to reduce levels of ozone and fine particles are likely to require continued reductions in NOx emissions.

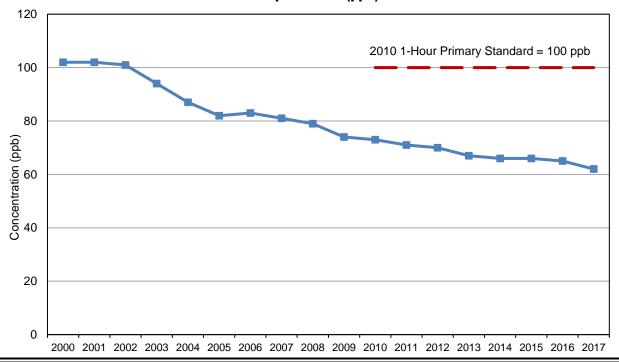

Figure 6-11 shows the highest 98th percentile values of the daily maximum one-hour concentrations of NO₂ for the years 2000 to 2017 in New Jersey. The 1-hour NAAQS of 100 ppb has not been exceeded since it was promulgated in 2010.

Figure 6-12 shows the New Jersey design values for the 1-hour NAAQS for the years 2000-2017. The design value, which determines compliance with the 1-hour NO₂ NAAQS, is the highest 3-year average of the 98th percentile values of the daily maximum one-hour concentrations at each New Jersey monitoring site. New Jersey has not violated the 1-hour NAAQS since it was implemented.

Figure 6-12 Nitrogen Dioxide Design Value Trend in New Jersey, 2000-2017 3-Year Average of the 98th Percentile Daily Maximum 1-Hour Concentrations Parts per Billion (ppb)

REFERENCES

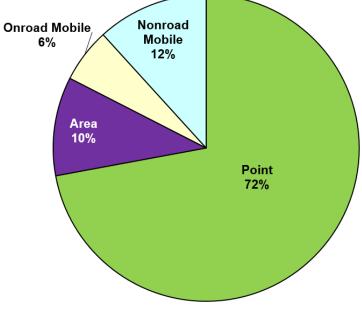
New Jersey Department of Environmental Protection, Bureau of Evaluation and Planning. *New Jersey Air Emission Inventories*. <u>www.state.nj.us/dep/baqp/inventory.html</u> . Accessed 7/30/18.

U.S. Environmental Protection Agency (USEPA). *Basic Information about NO*₂. <u>www.epa.gov/no2-pollution/basic-information-about-no2</u>. Accessed 7/30/18.

USEPA. Nitrogen Dioxide (NO₂) Pollution. Table of Historical Nitrogen Dioxide National Ambient Air Quality Standards (NAAQS). <u>www.epa.gov/no2-pollution/table-historical-nitrogen-dioxide-national-ambient-air-quality-standards-naags</u>. Accessed 7/30/18.

USEPA. *Nitrogen Dioxide (NO₂) Pollution*. <u>www.epa.gov/no2-pollution</u>. Accessed 7/30/18.

USEPA. What is Acid Rain? www.epa.gov/acidrain/what-acid-rain. Accessed 7/30/18.


2017 Sulfur Dioxide Summary

New Jersey Department of Environmental Protection

SOURCES

Sulfur dioxide (SO₂) is a heavy, colorless gas with a suffocating odor, that easily dissolves in water to form sulfuric acid. SO₂ gases are formed when fuels containing sulfur (coal, oil, and gasoline) are burned, or when gasoline is extracted Most of the sulfur dioxide from oil. released into the air comes from fuel combustion in electric utilities, especially those that burn coal with a high sulfur content. Sulfur is found in raw materials such as crude oil, coal, and ores that contain metals. Industrial facilities that derive their products from these materials may also release SO₂. The pie chart in Figure 7-1 summarizes the primary sources of SO₂ in New Jersey in 2017.

Figure 7-1 2017 New Jersey SO₂ Projected Emissions

Inventory Source: MARAMA 2017 BETA2

HEALTH AND ENVIRONMENTAL EFFECTS

Sulfur dioxide causes irritation of the mucous membranes. This is probably the result of sulfurous acid forming when the highly soluble SO_2 gas dissolves at the surface of the membranes. Groups that are especially susceptible to the harmful health effects of SO_2 include children, the elderly, and people with heart or lung disorders such as asthma. When SO_2 concentrations in the air become elevated, people in these sensitive groups and those who are active outdoors may have trouble breathing.

Sulfur dioxide reacts with other gases and particles in the air to form sulfates, which also can be harmful to people and the environment. Sulfate particles are the major cause of reduced visibility in the eastern United States. SO₂ forms acids that fall to the earth in rain and snow. Better known as acid rain, this acidic precipitation can damage forests and crops, can make lakes and streams too acidic for fish, and can speed up the decay of building materials and paints.

AMBIENT AIR QUALITY STANDARDS

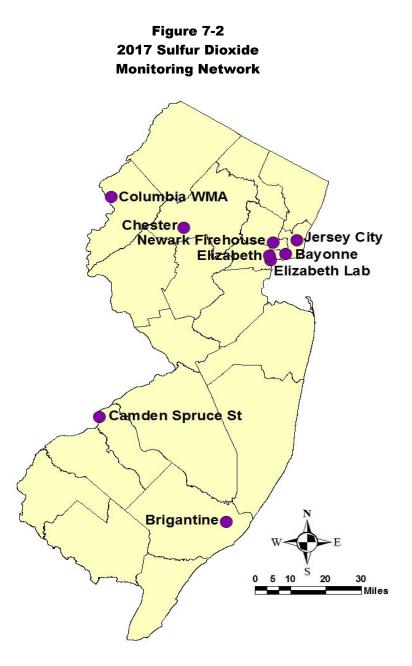
The current National Ambient Air Quality Standards (NAAQS) for SO₂ are shown in Table 7-1. Primary standards are set to provide public health protection, including protecting the health of sensitive populations such as asthmatics, children, and the elderly. Secondary standards provide public welfare protection, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings. In June 2010 the United States Environmental Protection Agency (USEPA) established a new primary 1-hour NAAQS for SO₂ at a level of 75 parts per billion (ppb). At the same time, the old 24-hour and annual average NAAQS were revoked, and the 3-hour secondary NAAQS was retained. Compliance with the 1-hour standard is determined by calculating the 99th percentile of 1-hour daily maximum concentrations for each monitoring site in the state each year, and then averaging each site's values for the three most recent years. This statistic is called the design value.

Table 7-1 also shows New Jersey's ambient air quality standards (NJAAQS) for SO₂, which are based on the older NAAQS. NJAAQS for SO₂ are expressed in micrograms per cubic meter (μ g/m³) as well as ppm, and are calculated using running averages (consecutive 3-hour, 24-hour and 12 month averages) rather than calendar year or non-overlapping block averages. The secondary 3-hour New Jersey standard is the same as the NAAQS, except that New Jersey uses a running average.

Table 7-1 National and New Jersey Ambient Air Quality Standards for Sulfur Dioxide (SO₂) Parts per Billion (ppb) Parts per Million (ppm) Micrograms per Cubic Meter (μg/m³)

Averaging Period	Туре	National	New Jersey ^a
1–hour ^b	Primary	75 ppb	
3-hours	Secondary	0.5 ppm ^c	1300 µg/m³ (0.5 ppm)
24–hours ^d	Primary		365 µg/m³ (0.14 ppm)
24–hours ^d	Secondary		260 µg/m³ (0.10 ppm)
12-months	Primary		80 µg/m³ (0.03 ppm)
12-months	Secondary		60 μg/m³ (0.02 ppm)

^a Based on running averages, over any 12 consecutive months in a year.


^b To meet this standard, the 3-year average of the 99th percentile of the daily maximum 1-hour averages at each monitor within the state must not exceed 75 ppb.

^c Based on successive non-overlapping blocks, beginning at midnight each day.

^d Not to be exceeded more than once in a year.

SO₂ MONITORING NETWORK

The New Jersey Department of Environmental Protection (NJDEP) monitored SO₂ levels at nine locations in 2017. These sites are shown in Figure 7-2. Two sites, Brigantine and Newark Firehouse, measure SO₂ concentrations at trace levels, down to a ten-thousandth part per million (0.0000 ppm). The other sites measure SO₂ concentrations to the thousandth of a part per million (0.000 ppm).

SO₂ LEVELS IN 2017

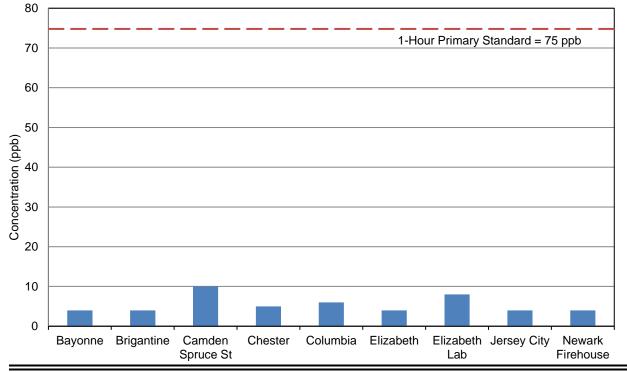
In 2017, there were no exceedances of the 1-hour NAAQS of 75 ppb. See Table 7-2 and Figures 7-3 and 7-4. Camden Spruce Street had the highest 1-hour value of 10 ppb. However, the highest 99th percentile value of 5 ppb was recorded at Jersey City. The highest design value, the 3-year average of the 99th-percentile of the daily maximum 1-hour SO₂ concentrations, was 10 ppb at Camden Spruce Street. This is the result of some very high values recorded at the Camden site in 2016, including two exceedances of the NAAQS, possibly due to port activity on the Delaware River.

There were no exceedances of the 3-hour secondary standard of 0.5 ppm. The highest value of 0.007 ppm, recorded at Jersey City, was the same when calculated using non-overlapping 3-hour blocks, as required by the NAAQS, or when calculated using running 3-hour averages, as specified by the NJAAQS. Results are shown in Table 7-3 and Figure 7-5.

No monitoring sites had exceedances of the 24-hour or 12-month New Jersey SO₂ standards during 2017. The highest and second-highest 24-hour average concentrations were 0.005 and 0.004 ppm, measured at the Jersey City monitoring station. The highest 12-month running average concentration of 0.00069 ppm was also recorded at Jersey City. See Tables 7-4 and 7-5, and Figures 7-6 and 7-7 for data for the other monitoring sites.

Table 7-2
2017 Sulfur Dioxide Concentrations in New Jersey
Daily Maximum and 99 th Percentile 1-Hour Averages
Parts per Billion (ppb)

	1-			
Monitoring Site	Highest Daily Maximum	2 nd -Highest Daily Maximum	99 th Percentile Daily Maximum	2015-2017 Design Value ^a
Bayonne	8	6	4	4
Brigantine	4.6	4.1	3.1	4
Camden Spruce St.	10	5	4	10
Chester	5	5	3	5
Columbia	5	5	4	6
Elizabeth	4	4	4	4
Elizabeth Lab	9	6	3	8
Jersey City	8	7	5	4
Newark Firehouse	8	6.9	2.5	4

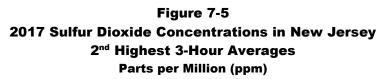

^a 3-Year (2015-2017) average of the 99th percentile 1-hour daily maximum concentrations.

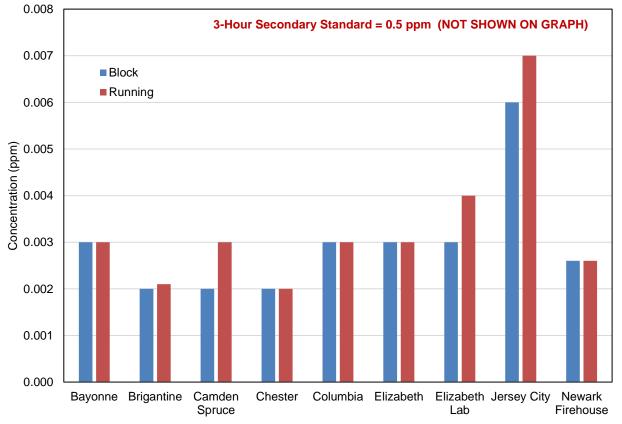
12 1-Hour Primary Standard = 75 ppb Maximum (NOT SHOWN ON GRAPH) 2nd-Highest 99th Percentile 10 8 Concentration (ppb)) 6 4 2 0 Elizabeth Jersey City Brigantine Camden Columbia Elizabeth Bayonne Chester Newark Spruce St Firehouse Lab

Figure 7-4

New Jersey Sulfur Dioxide Design Values for 2015-2017 3-Year Average of the 99th Percentile of the 1-Hour Daily Maximum Concentrations Parts per Billion (ppb)

Table 7-3 2017 Sulfur Dioxide Concentrations in New Jersey


3-Hour Averages Parts per Million (ppm)


Parts per minion (ppin)				
	3-Hour Average Concentrations			
Monitoring Site	Block ^a		Running ^b	
	Maximum 2nd- Highest		Maximum	2nd- Highest*
Bayonne	0.003	0.003	0.004	0.003
Brigantine	0.0021	0.002	0.0022	0.0021
Camden Spruce	0.002	0.002	0.003	0.003
Chester	0.004	0.002	0.004	0.002
Columbia	0.003	0.003	0.004	0.003
Elizabeth	0.003	0.003	0.003	0.003
Elizabeth Trailer	0.005	0.003	0.005	0.004
Jersey City	0.007	0.006	0.007	0.007
Newark Firehouse	0.0045	0.0026	0.0045	0.0026

^a NAAQS

^b NJAAQS

*Non-overlapping

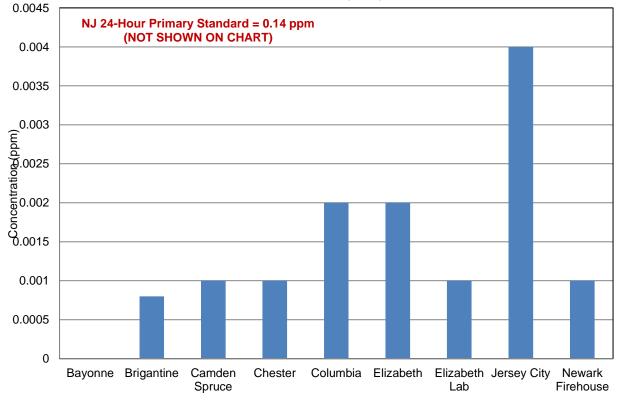


Table 7-42017 Sulfur Dioxide Concentrations in New Jersey24-Hour AveragesParts per Million (ppm)

	24-Hour Running Average	
Monitoring Site	Maximum	2 nd Highest (Non- overlapping)
Bayonne	0.001	0
Brigantine	0.0009	0.0008
Camden Spruce St.	0.001	0.001
Chester	0.001	0.001
Columbia	0.002	0.002
Elizabeth	0.002	0.002
Elizabeth Lab	0.001	0.001
Jersey City	0.005	0.004
Newark Firehouse	0.0012	0.001

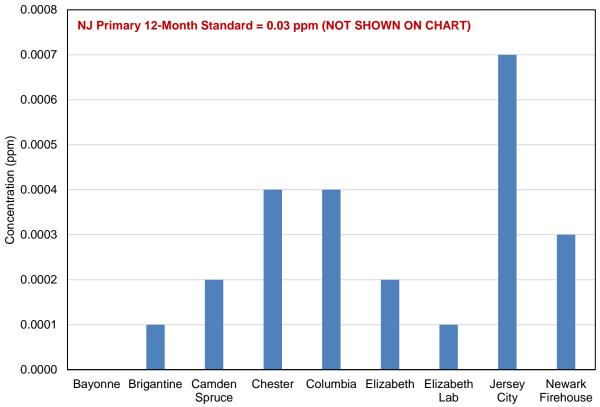
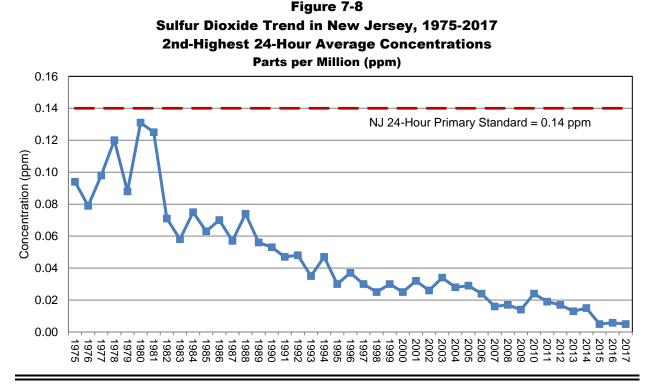


Table 7-52017 Sulfur Dioxide Concentrations in New JerseyMaximum 12-Month Running AveragesParts per Million (ppm)

Monitoring Site	Maximum 12- Month Running Average
Bayonne	0.0000
Brigantine	0.0001
Camden Spruce St.	0.0002
Chester	0.0004
Columbia	0.0004
Elizabeth	0.0002
Elizabeth Lab	0.0001
Jersey City	0.0007
Newark Firehouse	0.0003



SO₂ TRENDS

Sulfur dioxide concentrations across the country have decreased significantly since the first NAAQS were set in 1971. Figure 7-8 shows the second-highest daily average concentrations of SO₂ recorded in New Jersey each year since 1975. Nationwide efforts to reduce ambient sulfur levels have focused on sulfur in fuels. Regulations passed in 2000 reduced the sulfur content of gasoline by up to 90 percent, and enabled the use of new emission control technologies in cars, sport utility vehicles (SUVs), minivans, vans and pick-up trucks (beginning with model year 2004). Even more stringent gasoline and emissions controls for sulfur went into effect in 2017. And in New Jersey, limits on sulfur in commercial fuel oil were implemented beginning in 2014.

A coal-burning power plant across the Delaware River in Pennsylvania had for many years been suspected of causing high SO₂ levels in New Jersey. Air dispersion modeling carried out by NJDEP showed that the facility was causing likely violations of the SO₂ NAAQS. New Jersey petitioned the USEPA under Section 126 of the Clean Air Act to take action against the Portland Power Plant. In support of the petition, NJDEP established an SO₂ monitoring station at the Columbia Wildlife Management Area in Knowlton Township, Warren County, in September 2010. The dramatic increase in the monitored 99th percentile 1-hour SO₂ concentration in 2010 (shown in Figure 7-9) is attributable to measurements taken at the Columbia site. In October 2011, USEPA finalized a rule to grant New Jersey's petition. This final rule required the Portland Power Plant to reduce its SO₂ emissions such that the plant's contribution to predicted air quality standard violations would be lowered within one year, and completely eliminated within three years. The power plant stopped operating in mid-2014. Recent monitoring data has shown that Warren County and its vicinity are now able to meet the 1-hour SO₂ NAAQS.

Figure 7-10 shows the trend in the design value, the value that determines compliance with the NAAQS. The design value for the 1-hour NAAQS is the 3-year average of the 99^{th} percentile of the daily maximum 1-hour concentrations of SO₂ at each site. The values presented are the highest statewide for a given year.

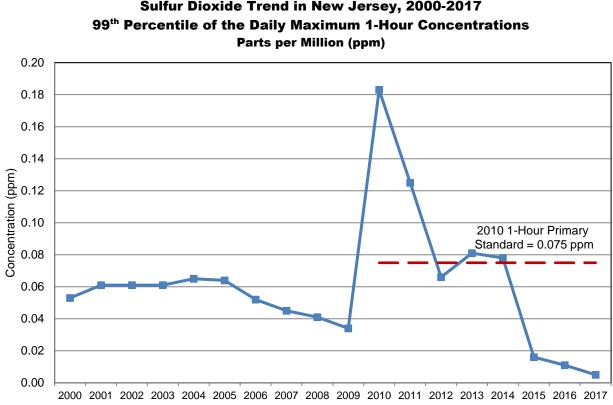
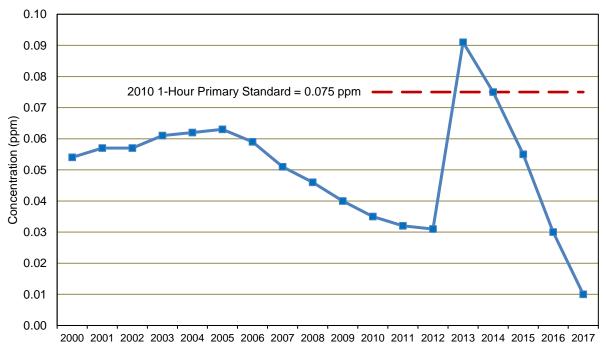



Figure 7-9 Sulfur Dioxide Trend in New Jersey, 2000-2017

Figure 7-10 Sulfur Dioxide Design Value Trend in New Jersey, 2000-2017 3-Year Average of the 99th Percentile Daily Maximum 1-Hour Concentrations **Parts per Million (ppm)**

REFERENCES

Agency for Toxic Substances and Disease Registry. *ToxFAQs for Sulfur Dioxide*. June 1999. <u>www.atsdr.cdc.gov/toxfaqs/tf.asp?id=252&tid=46</u>. Accessed 7/23/18.

"Revisions to Final Response to Petition from New Jersey Regarding SO2; Direct Final Rule." 76 Federal Register 79541 (December 22, 2011), pp. 79574-79578. www.federalregister.gov/documents/2011/12/22/2011-32652/revisions-to-final-response-to-petition-from-new-jersey-regarding-so2.

New Jersey Department of Environmental Protection (NJDEP) Bureau of Evaluation and Planning. *Petitions Pursuant to Section 126 of the Clean Air Act.* <u>www.state.nj.us/dep/baqp/petition/126petition.htm</u>. Accessed 7/23/18.

New Jersey Department of Environmental Protection, Bureau of Evaluation and Planning. *New Jersey Air Emission Inventories*. <u>www.state.nj.us/dep/baqp/inventory.html</u> . Accessed 7/23/18.

NJDEP. New Jersey Administrative Code, Title 7, Chapter 27, Subchapter 7 (N.J.A.C. 7:27-7). Sulfur. <u>www.nj.gov/dep/aqm/currentrules/Sub7.pdf</u>. Accessed 7/23/18.

NJDEP. N.J.A.C. 7:27-9. Sulfur in Fuels. <u>www.nj.gov/dep/aqm/currentrules/Sub9.pdf</u> . Accessed 7/23/18.

NJDEP. N.J.A.C. 7:27-10. Sulfur in Solid Fuels. <u>www.nj.gov/dep/aqm/currentrules/Sub10.pdf</u> . Accessed 7/23/18.

U.S. Environmental Protection Agency (USEPA). *Air Trends. Sulfur Dioxide Trends*. <u>www.epa.gov/air-trends/sulfur-dioxide-trends</u>. Accessed 7/23/18.

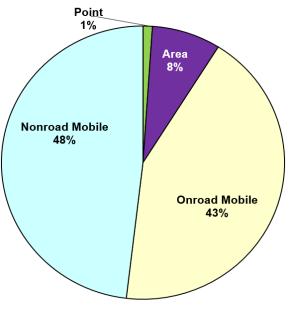
USEPA. Gasoline Standards – Gasoline Sulfur. <u>www.epa.gov/gasoline-standards/gasoline-sulfur</u>. Accessed 7/23/18.

USEPA. Our Nation's Air. <u>https://gispub.epa.gov/air/trendsreport/2017/</u>. Accessed 7/23/18.

USEPA. Sulfur Dioxide (SO2) Pollution. www.epa.gov/so2-pollution. Accessed 7/23/18.

USEPA. *Table of Historical Sulfur Dioxide National Ambient Air Quality Standards (NAAQS)*. <u>www.epa.gov/so2-pollution/table-historical-sulfur-dioxide-national-ambient-air-quality-standards-naaqs</u>. Accessed 7/23/18.

USEPA. What is Acid Rain? www.epa.gov/acidrain/what-acid-rain. Accessed 7/23/18.


2017 Carbon Monoxide Summary

New Jersey Department of Environmental Protection

SOURCES

Carbon monoxide (CO) is a colorless, odorless gas formed when carbon in fuels is not burned completely. The main source of outdoor CO is exhaust from internal combustion engines, primarily on-road vehicles, as well as non-road vehicles, generators, construction equipment, boats and other types of mobile sources. 50% of all CO emissions nationwide are attributable to mobile sources, and over 90% in New Jersey. Significant amounts of CO are also emitted from fuel combustion in boilers and incinerators, natural sources such as forest fires, and various industrial processes. A pie chart estimating the contribution of different categories of CO sources in New Jersey in 2017 is shown in Figure 8-1.

Outdoor concentrations of CO can rise during atmospheric inversions. This phenomenon occurs when cooler air is trapped beneath a layer of warmer air, which often occurs overnight. The inversion acts like a lid, preventing pollution from mixing in the atmosphere and effectively trapping it close to the ground (see Figure 8-2). This can allow CO to accumulate at ground-level. Figure 8-1 2017 New Jersey 2017 Carbon Monoxide Projected Emissions

Inventory Source: MARAMA 2017 BETA2

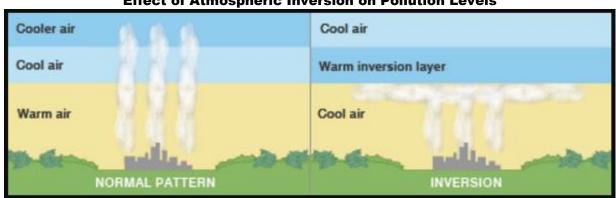


Figure 8-2 Effect of Atmospheric Inversion on Pollution Levels

https://kisialevelgeography.files.wordpress.com/2014/06/44875197_thermal_inversion466x135.gif

Figure 8-3 shows that CO concentrations are slightly higher in the winter, probably because inversions are more frequent during the winter months. Also, high CO levels often coincide with morning and afternoon rush hours. This diurnal variation is displayed in Figure 8-4.

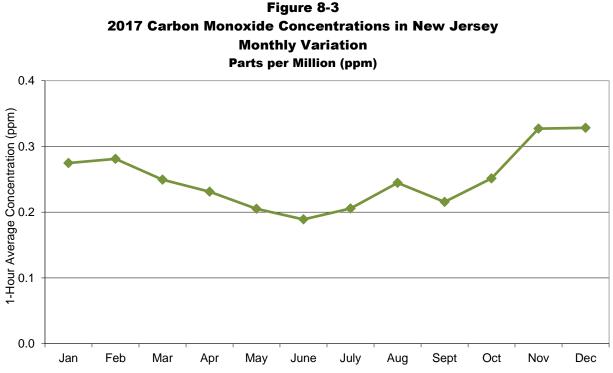
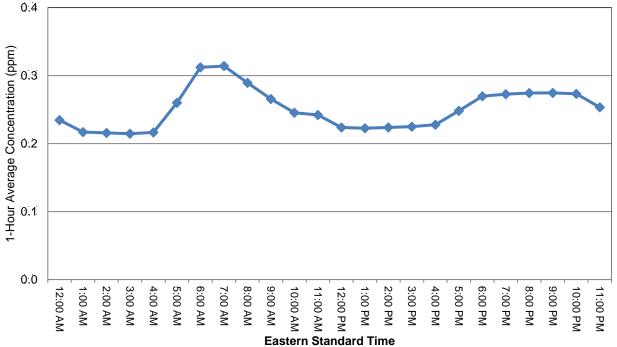



Figure 8-4 2017 Carbon Monoxide Concentrations in New Jersey Hourly Variation Parts per Million (ppm)

Carbon Monoxide

8-2

HEALTH EFFECTS

Carbon monoxide reduces the oxygen-carrying capacity of blood, therefore reducing the distribution of oxygen to organs like the heart and brain. The most common symptoms of exposure to high concentrations of carbon monoxide are headaches and nausea. Exposure to extremely high concentrations, usually resulting from combustion exhaust accumulating in enclosed indoor spaces, can be life-threatening. Such high levels of CO are not likely to occur outdoors. The health threat from exposure to outdoor CO is most serious for those who suffer from cardiovascular disease. For a person with heart disease, a single exposure to CO at low levels may reduce that individual's ability to exercise and may cause chest pain (angina).

AMBIENT AIR QUALITY STANDARDS

National Ambient Air Quality Standards (NAAQS) are established for the entire U.S. Primary standards are set to provide public health protection, including protecting the health of sensitive populations such as asthmatics, children, and the elderly. Secondary standards provide public welfare protection, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings. For carbon monoxide, there are currently two primary, or health-based, NAAQS: a 1-hour standard of 35 parts per million (ppm), and an 8-hour standard of 9 ppm. These levels are not to be exceeded more than once in any calendar year. Therefore, the design value, or the actual statistical value that determines compliance with the NAAQS, is the second-highest 1-hour and 8-hour value in a given year. There are no national secondary, or welfare-based, standards for CO at this time. New Jersey also has standards for CO, and they are equivalent to the NAAQS even though they have different units (milligrams per cubic meter as opposed to parts per million). Also, the 8-hour state standard is based on a running average, not to be exceeded more than once in a 12-month period. The state has set secondary standards for CO at the same level as the primary standards. The standards are all summarized in Table 8-1.

Table 8-1 National and New Jersey Ambient Air Quality Standards for Carbon Monoxide Parts per Million (ppm) Milligrams per Cubic Meter (mg/m3)

Averaging Period	Туре	National ^a	New Jersey ^b
1-Hour	Primary	35 ppm	40 mg/m ³ (35 ppm)
1-Hour	Secondary		40 mg/m ³ (35 ppm)
8-Hours	Primary	9 ppm	10 mg/m ³ (9 ppm)
8-Hours	Secondary		10 mg/m³ (9 ppm)

^a Not to be exceeded more than once in a calendar year.

^b Not to be exceeded more than once in any consecutive 12-month period.

CO MONITORING NETWORK

The New Jersey Department of Environmental Protection (NJDEP) operated six CO monitoring stations in 2017. These sites are shown in the map in Figure 8-5. The Newark Firehouse station is part of the U.S. Environmental Protection Agency's (USEPA) National Core Multipollutant Monitoring Network (NCore). It measures and reports CO concentrations at trace levels, down to a hundredth of a ppm (0.00 ppm). The other stations are Camden Spruce Street, Elizabeth, Elizabeth Lab, Fort Lee Near Road, and Jersey City.

Figure 8-5 2017 Carbon Monoxide Monitoring Network

CO LEVELS IN 2017

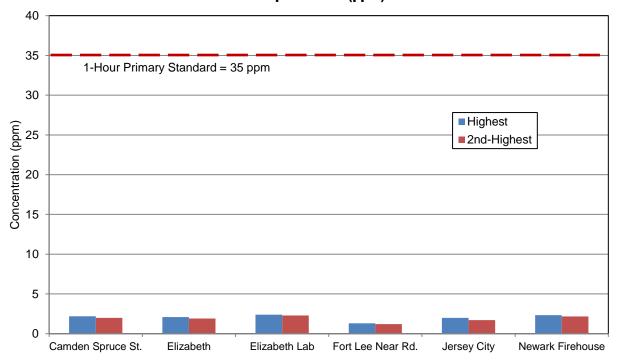

There were no exceedances of any CO standards at any of the New Jersey monitoring sites during 2017. The maximum 1-hour average CO concentration recorded in 2017 was 2.4 ppm, at the Elizabeth station. The highest 8-hour average CO concentration recorded was 1.8 ppm, at the Camden Spruce Street, Elizabeth, and Elizabeth Lab stations. Summaries of the 2017 data are provided in Table 8-2, and Figures 8-6 and 8-7.

Table 8-2
2017 Carbon Monoxide Concentrations in New Jersey
1-Hour and 8-Hour Averages

Parts per Million (ppm)												
	1-Hour Average	Concentrations	8-Hour Average Concentrations									
Monitoring Site	Highest	2nd-Highest	Highest	2nd-Highest*								
Camden Spruce St.	2.2	2.0	1.8	1.4								
Elizabeth	2.4	2.3	1.8	1.6								
Elizabeth Lab	2.1	1.9	1.8	1.3								
Fort Lee Near Rd.	1.3	1.2	1.0	0.9								
Jersey City	2.0	1.7	1.1	1.1								
Newark Firehouse	2.33	2.17	1.4	1.4								

*Non-overlapping 8-hour periods

8-Hour Averages Parts per Million (ppm) 10 9 8-Hour Primary Standard = 9 ppm 8 7 Concentration (ppm) Highest 6 2nd-Highest (NOL*) 5 4 3 2 1 0 Camden Spruce St. Elizabeth Elizabeth Lab Fort Lee Near Rd. Jersey City **Newark Firehouse**

Figure 8-7 2017 Carbon Monoxide Concentrations in New Jersey 8-Hour Averages Parts per Million (ppm)

*Non-overlapping 8-hour periods

CO TRENDS

Carbon monoxide levels in outdoor air have improved dramatically over the past two-and-a-half decades. Figures 8-8 and 8-9 present the trends in CO levels since 1990. The graphs actually show the second-highest 1-hour and 8-hour values recorded, because those are the design values that determine if the NAAQS are being met (one exceedance per site is allowed each year). The entire state was officially declared to have attained the CO standards as of August 23, 2002. Years ago, unhealthy levels of CO were recorded on a regular basis. The reduction in CO levels is due primarily to cleaner-running cars and other vehicles, which are by far the largest source of this pollutant outdoors. The last violation of the 8-hour NAAQS was in 1994.

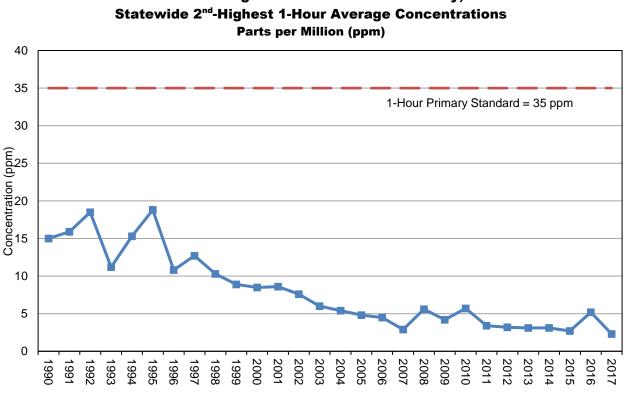
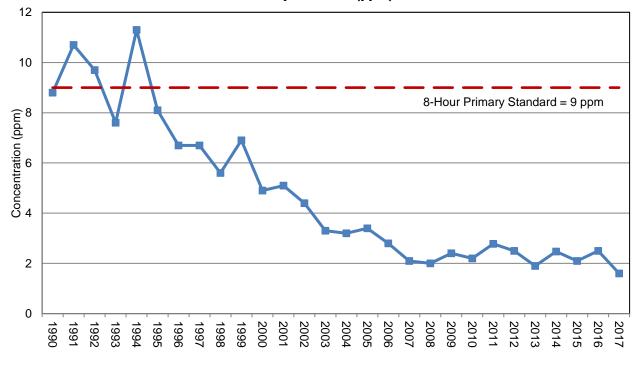



Figure 8-8 Carbon Monoxide Design Value Trend in New Jersey, 1990-2017

Figure 8-8 Carbon Monoxide Design Value Trend in New Jersey, 1990-2017 Statewide 2nd Highest 8-Hour Average Concentrations **Parts per Million (ppm)**

REFERENCES

New Jersey Department of Environmental Protection, Bureau of Evaluation and Planning. *New Jersey Air Emission Inventories*. <u>www.state.nj.us/dep/baqp/inventory.html</u> . Accessed 6/14/18.

U.S. Environmental Protection Agency (USEPA). *Carbon Monoxide (CO) Pollution in Outdoor Air*. **WWW.EPA.GOV/CO-POLLUTION**. Accessed 6/14/18.

USEPA. *Air Trends: Carbon Monoxide Trends*. <u>www.epa.gov/air-trends/carbon-monoxide-trends</u>. Accessed 6/14/18.

USEPA. *Table of Historical Carbon Monoxide (CO) National Ambient Air Quality Standards (NAAQS).* www.epa.gov/criteria-air-pollutants/naags-table. Accessed: 6/14/18.

2017 Meteorology Summary

New Jersey Department of Environmental Protection

AIR POLLUTION AND METEOROLOGY

Meteorology plays an important role in the distribution of pollution throughout the troposphere, the layer of the atmosphere closest to the earth's surface. Atmospheric processes such as wind speed and wind direction affect the transport and dispersion of air pollution. Precipitation, solar radiation, and other weather phenomena influence chemical reactions and atmospheric transformations. By studying meteorological and air pollution data together, scientists and mathematicians have developed reasonably accurate models for predicting the fate of pollutants as they go through the stages of transport, dispersion, transformation, and removal. Air pollution models can assist in comparing predicted pollutant concentrations to National Ambient Air Quality Standards (NAAQS), in determining the impacts of new and existing air pollution sources, and in designing ambient air monitoring networks.

The New Jersey Department of Environmental Protection (NJDEP) Bureau of Air Monitoring collects meteorological data at a number of its air monitoring stations. This data can be used by planners in preparing State Implementation Plans (SIPs) to reduce pollutant emissions; by engineers to design or evaluate air pollution permit applications; and by scientists to site air monitoring stations.

CLIMATOLOGY IN NEW JERSEY

New Jersey is located about halfway between the Equator and the North Pole, on the eastern coast of the United States. Its geographic location results in the state being influenced by different air streams at different times (wet, dry, hot, cold), making for daily weather that is highly variable.

Although New Jersey is one of the smallest states in the Union, with a land area of 7,836 square miles, it has five distinct climate zones, which are classified as the Northern, Central, Pine Barrens, Southwest, and Coastal Zones. The topography of the different zones, their distance from the Atlantic Ocean, and the prevailing atmospheric flow patterns affecting them produce distinct variations in the daily weather. These climate zones are shown in Figure 9-1.

Source: Office of the New Jersey State Climatologist

MONITORING LOCATIONS

NJDEP collected meteorological data at eight stations in its monitoring network in 2017. Not all meteorological parameters were measured at each site. Table 9-1 lists the parameters monitored at each station, and Figure 9-2 is a map of the 2017 meteorological monitoring network. In Tables 9-2 through 9-6, the 2017 meteorological data is summarized for temperature, rain, relative humidity, solar radiation, and barometric pressure. Figure 9-3 presents the average temperature for each monitoring site compared with the statewide 30-year average. Figure 9-4 shows the monthly precipitation at each site, as well as the statewide 30-year average.

Figures 9-5 through 9-13 show annual wind roses for Bayonne, Camden Spruce Street, Columbia, Elizabeth Lab, Flemington, Fort Lee Near Road, Newark Firehouse, and Rider University, respectively. Presented in a circular format, a wind rose shows the frequency of winds blowing *from* a specific direction for a specified period. The length of each "spoke" around the circle is related to the frequency that the wind blows from a particular direction per unit time. Each concentric circle represents a different frequency, starting with zero at the center and increasing frequencies at the outer circles. Each spoke is broken down into color-coded bands that show wind speed ranges.

			raranic		innar y			
	Site Name	Temperature	Relative Humidity	Wind Speed	Wind Direction	Barometric Pressure	Solar Radiation	Rain
1	Bayonne	Х	Х	Х	Х	Х		Х
2	Camden Spruce Street	Х	Х	Х	Х	Х		Х
3	Columbia	Х	Х	Х	Х	Х		Х
4	Elizabeth Lab	Х	Х	Х	Х	Х		Х
5	Flemington	Х	Х	Х	Х	Х		Х
6	Fort Lee Near Road	Х	Х	Х	Х	Х		Х
7	Newark Firehouse	Х	Х	Х	Х	Х	Х	Х
8	Rider University	Х	Х	Х	Х	Х		

Table 9-12017 New Jersey Meteorological Monitoring NetworkParameter Summary

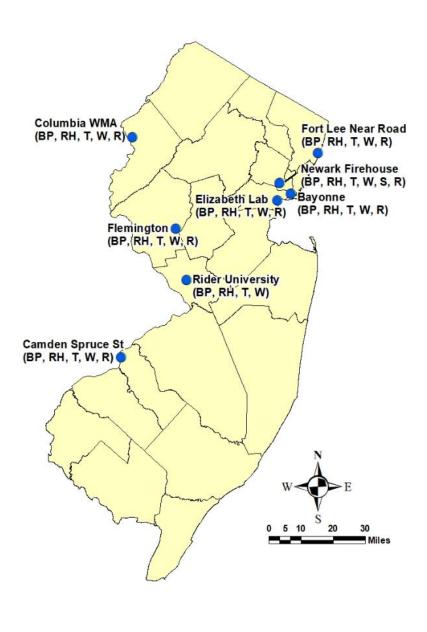
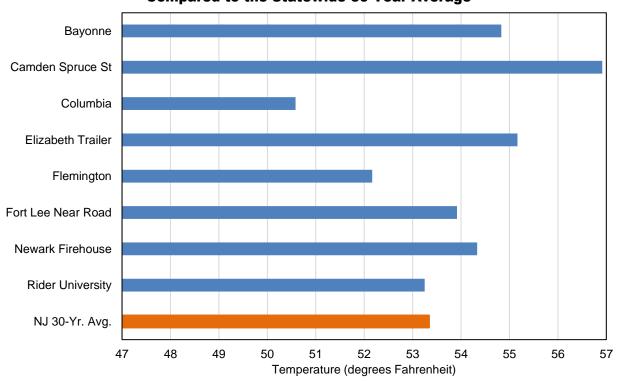


Figure 9-2 2017 Meteorological Monitoring Network


Legend

	Meteorological Site
BP	Barometric Pressure
RH	Relative Humidity
S	Solar Radiation
Т	Temperature
W	Wind Speed & Direction
R	Rain

SITE		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	ANNUAL
	Mean	37	39	38	54	60	71	75	73	69	62	46	34	55
Bayonne	Minimum	16	20	14	37	45	52	61	61	54	43	25	10	10
	Maximum	62	70	69	80	89	91	92	90	89	81	73	60	92
Quantan	Mean	37	43	41	59	62	74	78	74	70	63	47	35	57
Camden Spruce St	Minimum	16	23	16	39	44	53	64	61	54	43	24	11	11
Spruce St	Maximum	65	73	73	86	92	96	95	91	91	82	74	62	96
	Mean	32	36	35	54	57	67	71	67	63	56	40	29	51
Columbia	Minimum	7	17	10	30	36	44	52	48	42	34	18	5	5
	Maximum	54	72	63	83	90	92	89	87	89	80	72	54	92
	Mean	36	40	38	56	60	72	76	73	69	62	46	34	55
Elizabeth Lab	Minimum	12	18	13	37	43	52	62	60	53	40	23	8	8
Lab	Maximum	66	73	72	86	93	95	94	91	89	83	73	63	95
	Mean	34	38	36	54	58	69	73	69	65	58	41	31	52
Flemington	Minimum	4	17	13	29	34	44	53	50	43	32	20	7	4
	Maximum	63	72	70	83	91	94	92	89	90	82	73	61	94
Familian	Mean	35	38	36	52	62	71	75	72	68	62	44	32	54
Fort Lee Near Road	Minimum	12	17	12	35	43	50	59	59	52	40	22	7	7
Near Roau	Maximum	63	66	68	84	92	95	93	89	87	80	72	58	95
Neuronia	Mean	36	39	37	55	60	71	75	72	68	61	45	33	54
Newark Firehouse	Minimum	13	18	13	36	43	51	60	60	52	41	23	9	9
Thenouse	Maximum	65	70	70	83	92	93	92	89	90	82	73	61	93
Rider	Mean	35	39	38	55	59	69	74	70	66	58	44	32	53
University	Minimum	3	17	12	30	37	46	55	52	44	35	21	6	3
University	Maximum	64	72	72	84	90	93	92	89	89	82	74	63	93

Table 9-22017 Temperature Data (in Degrees Fahrenheit)from NJ's Air Monitoring Sites

Figure 9-3 2017 Average Temperatures at NJDEP Air Monitoring Sites Compared to the Statewide 30-Year Average

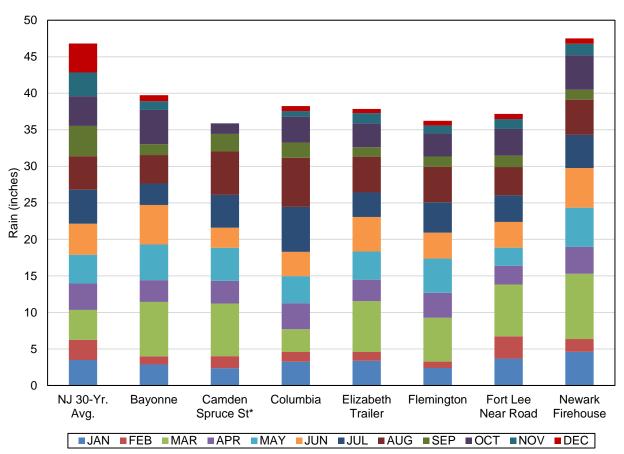


Table 9-3
2017 Rain Data (Inches) from NJ's Air Monitoring Sites

SITE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL TOTAL
Bayonne	2.88	1.10	7.45	2.98	4.88	5.43	2.93	3.89	1.49	4.69	1.18	0.84	39.74
Camden Spruce St.	2.37	1.64	7.21	3.11	4.52	2.76	4.48	5.94	2.40	1.46	ND	ND	*
Columbia	3.25	1.33	3.12	3.55	3.70	3.35	6.15	6.73	2.09	3.53	0.77	0.68	38.24
Elizabeth Lab	3.38	1.21	6.96	2.93	3.85	4.73	3.35	4.92	1.29	3.29	1.38	0.56	37.84
Flemington	2.39	0.88	5.99	3.43	4.69	3.53	4.18	4.86	1.40	3.15	1.09	0.64	36.23
Fort Lee Near Road	3.69	3.03	7.09	2.57	2.47	3.54	3.63	3.88	1.56	3.67	1.34	0.70	37.17
Newark Firehouse	4.61	1.74	8.95	3.68	5.36	5.44	4.53	4.82	1.36	4.72	1.59	0.71	47.51

ND = no data

*Not able to determine an annual statistic because of missing data.

*Camden Spruce Street has no rain data for November and December.

SITE		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
	Mean	65	57	52	60	61	58	61	61	63	63	59	58	60
Bayonne	Minimum	33	25	17	23	24	25	29	26	28	21	25	35	17
	Maximum	89	89	89	90	89	90	89	88	88	88	88	88	90
O	Mean	59	50	49	54	58	54	61	59	60	62	56	53	56
Camden Spruce St	Minimum	26	22	15	16	20	22	27	27	24	23	21	24	15
Spruce St	Maximum	89	90	89	89	90	88	90	90	90	90	90	88	90
	Mean	68	59	55	61	67	69	75	77	76	73	66	62	67
Columbia	Minimum	30	17	13	19	24	24	33	37	28	23	21	32	13
	Maximum	91	90	91	91	91	91	92	92	92	93	91	91	93
	Mean	63	55	49	58	61	56	61	62	62	63	57	55	59
Elizabeth Lab	Minimum	26	17	13	16	23	20	27	26	22	18	20	27	13
Lab	Maximum	91	91	91	91	91	92	91	91	90	91	89	89	92
	Mean	68	59	54	61	67	65	71	73	73	71	66	62	66
Flemington	Minimum	30	19	13	17	26	23	30	35	30	19	24	29	13
	Maximum	91	92	91	92	92	93	93	93	93	92	92	92	93
E ant la ca	Mean	63	55	50	56	62	55	60	60	62	62	57	57	58
Fort Lee Near Road	Minimum	28	17	13	19	23	21	29	30	22	20	22	30	13
Near Roau	Maximum	91	91	91	91	92	92	91	90	91	91	91	90	92
Neurost	Mean	63	54	49	58	61	57	61	61	62	61	57	54	58
Newark Firehouse	Minimum	28	17	13	16	25	21	28	28	22	18	21	27	13
riienouse	Maximum	91	91	91	91	92	92	91	91	89	91	89	88	92
Distan	Mean	70	59	57	65	70	68	74	74	74	75	67	62	68
Rider Universitv	Minimum	33	20	15	18	29	26	36	34	34	21	25	28	15
University	Maximum	96	96	95	95	95	96	95	95	95	95	94	94	96

Table 9-42017 Relative Humidity Data (%) from NJ's Air Monitoring Sites

Table 9-52017 Solar Radiation Data (in Langleys) from NJ's Air Monitoring Sites

SITE		JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Newark	Mean	0.08	0.15	0.21	0.25	0.29	0.36	0.34	0.31	0.25	0.17	0.12	0.08	0.22
Firehouse	Maximum	0.74	0.97	1.19	1.29	1.37	1.43	1.43	1.39	1.28	1.05	0.76	0.64	1.43

Table 9-6

2017 Average Barometric Pressure Data (in inches of Hg) from NJ's Air Monitoring Sites

SITE	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	ANNUAL
Bayonne	29.94	29.91	30.09	29.99	29.87	29.9	29.93	30	29.99	30.07	30.09	30.04	29.99
Camden Spruce St	30.02	29.93	30.11	29.98	29.87	29.91	29.93	30	29.99	30.07	30.1	30.06	30.00
Columbia	29.46	29.4	29.57	29.48	29.37	29.41	29.45	29.52	29.51	29.57	29.57	29.52	29.49
Elizabeth Lab	29.97	29.91	30.08	29.97	29.86	29.89	29.92	29.99	29.98	30.06	30.07	30.03	29.98
Flemington	29.83	29.77	29.96	29.84	29.72	29.75	29.79	29.85	29.85	29.92	29.94	29.9	29.84
Fort Lee Near Road	29.65	29.59	29.76	29.68	29.58	29.59	29.63	29.69	29.68	29.75	29.76	29.71	29.67
Newark Firehouse	29.87	29.8	29.98	29.88	29.76	29.79	29.83	29.89	29.88	29.97	29.98	29.93	29.88
Rider University	29.88	29.82	29.97	29.88	29.76	29.8	29.83	29.9	29.89	29.97	30.01	29.95	29.89

.

Wind Roses - Distribution of Wind Speed & Wind Direction

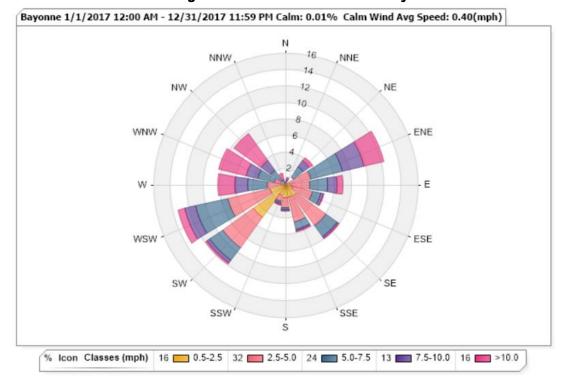
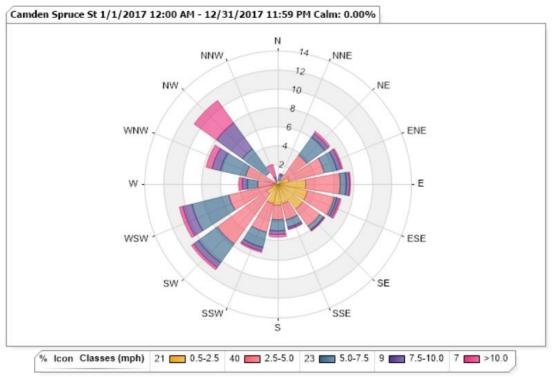
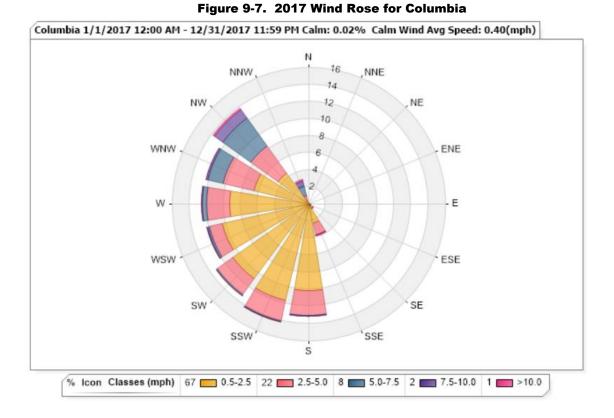




Figure 9-5. 2017 Wind Rose for Bayonne

Figure 9-6. 2017 Wind Rose for Camden Spruce Street

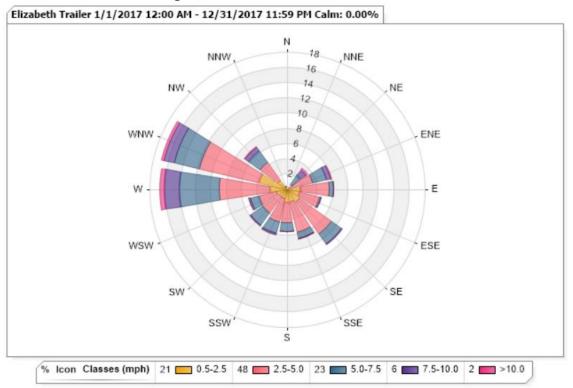


Figure 9-8. 2017 Wind Rose for Elizabeth Lab

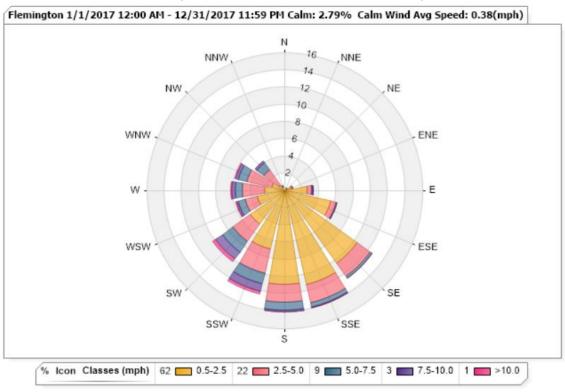
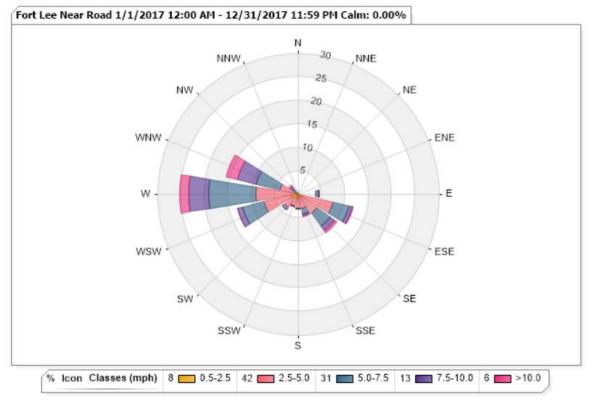



Figure 9-9. 2017 Wind Rose for Flemington

Figure 9-10. 2017 Wind Rose for Fort Lee Near Road

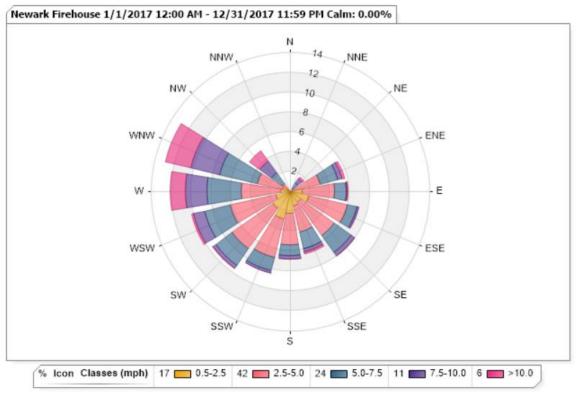
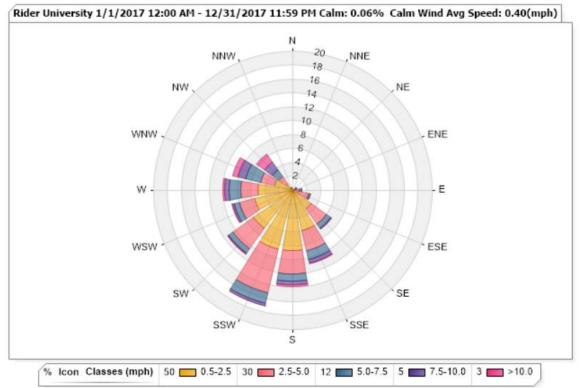



Figure 9-11. 2017 Wind Rose for Newark Firehouse

REFERENCES

Office of the New Jersey State Climatologist. The Climate of New Jersey. <u>http://climate.rutgers.edu/stateclim/?section=njcp&target=NJCoverview</u>. Accessed 8/23/2018.

Office of the New Jersey State Climatologist. Monthly Climate Tables; New Jersey (Statewide) Average Temperature. <u>http://climate.rutgers.edu/stateclim_v1/nclimdiv/index.php?stn=NJ00&elem=avgt</u>. Accessed 8/23/2018.

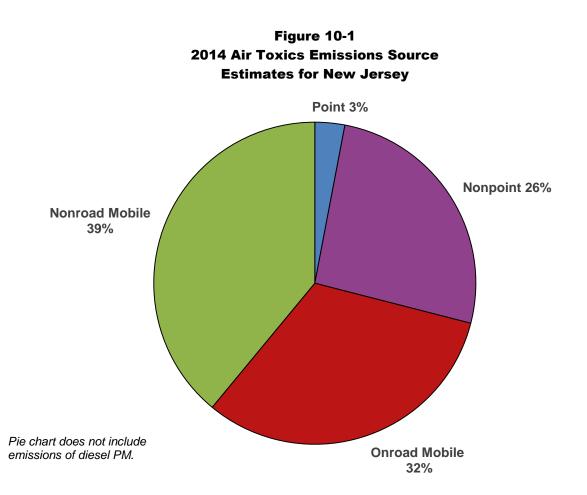
Office of the New Jersey State Climatologist. Monthly Climate Tables; New Jersey (Statewide) Precipitation, 1895-2016. http://climate.rutgers.edu/stateclim_v1/nclimdiv/index.php?stn=NJ00&elem=pcpn. Accessed 8/23/2018.

United States Environmental Protection Agency (USEPA). Air Pollution Monitoring. <u>http://www3.epa.gov/airquality/montring.html</u>. Accessed 8/24/2018.

2017 Air Toxics Summary

New Jersey Department of Environmental Protection

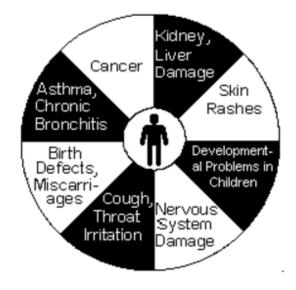
INTRODUCTION


Air pollutants can be generally divided into two categories: criteria pollutants (ozone, sulfur dioxide, carbon monoxide, nitrogen dioxide, particulate matter, and lead); and air toxics. The criteria pollutants have been addressed at the national level since the 1970s. The United States Environmental Protection Agency (USEPA) has set National Ambient Air Quality Standards (NAAQS) for them, and they are subject to a standard planning process that includes monitoring, reporting, and control requirements. Each of these pollutants is discussed in its own section of this New Jersey Department of Environmental Protection (NJDEP) 2016 Air Quality Report.

Air toxics are basically all the other chemicals released into the air that have the potential to cause adverse health effects in humans. These effects cover a wide range of conditions, from lung irritation to birth defects to cancer. There are no NAAQS for these pollutants, but in 1990 the U.S. Congress directed the USEPA to begin addressing a list of almost 200 air toxics by developing control technology standards for specific types of sources that emit them. These air toxics are known as the Clean Air Act Hazardous Air Pollutants (HAPs). You can get more information about HAPs at the USEPA Air Toxics web site at www.epa.gov/ttn/atw. NJDEP also has several web pages dedicated to air toxics. They can be accessed at www.nj.gov/dep/airtoxics.

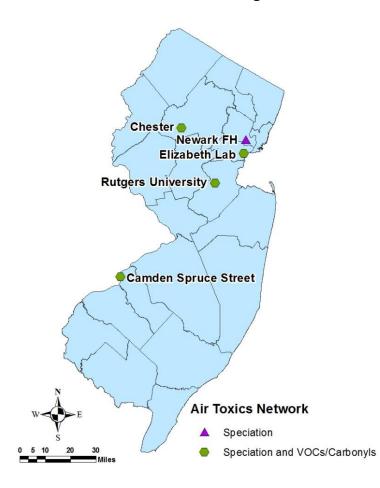
Sources of Air Toxics

USEPA compiles a National Emissions Inventory (NEI) every three years. In addition to criteria pollutants and criteria precursors, it also collects information on emissions of hazardous air pollutants. This data is then used for the National-Scale Air Toxics Assessment (NATA), which combines emissions data and complex dispersion and exposure models to estimate the public's exposure to air toxics around the country. The pie chart in Figure 10-1, taken from the 2014 NEI, shows that mobile sources are the largest contributors of air toxics emissions in New Jersey. More information can be found at <u>www.epa.gov/national-air-toxics-assessment</u>.


In New Jersey, on-road mobile sources (cars and trucks) account for 32% of the air toxics emissions, and non-road mobile sources (airplanes, trains, construction equipment, lawnmowers, boats, dirt bikes, etc.) contribute an additional 39%. Nonpoint sources (residential, commercial, and small industrial sources) represent 26% of the inventory, and point sources (such as factories and power plants) account for the remaining 3%.

HEALTH EFFECTS

People exposed to significant amounts of air toxics may have an increased chance of developing cancer or experiencing other serious health effects. The noncancer health effects can range from respiratory, neurological, reproductive, developmental, or immune system damage, to irritation and effects on specific organs (see Figure 10-2). In addition to inhalation exposure, there can be risks from the deposition of toxic pollutants onto soil or surface water. There, they can be taken up by humans directly, or by consuming exposed plants and animals.


Figure 10-2 Potential Effects of Air Toxics

Source: www3.epa.gov/ttn/atw/3_90_024.html

MONITORING LOCATIONS

In 2017 NJDEP had four air toxics monitoring sites that measure volatile organic compounds (VOCs) and carbonyls (a subset of VOCs that includes formaldehyde, acetaldehyde and other related compounds). As shown in Figure 10-3, the monitors are located at Camden Spruce Street, Chester, Elizabeth Lab, and at Rutgers University in East Brunswick. Toxic metals data are collected at the same four monitoring stations, plus Newark Firehouse.

The Chester monitoring site is in rural Morris County, away from known sources, and serves as kind of a "background" monitor. The Rutgers University monitoring station is in a suburban setting on Rutgers agricultural lands in East Brunswick. The Elizabeth Lab monitoring station sits next to the Exit 13 tollbooths on the New Jersey Turnpike. The Camden Spruce Street monitoring station is located in an industrial urban setting. The Newark Firehouse monitoring station is in an urban residential area. More information about the air monitoring sites can be found in the Air Monitoring Network section and Appendix A of the annual Air Quality Report.

New Jersey's VOC monitors are part of the Urban Air Toxics Monitoring Program (UATMP), sponsored by the USEPA. A 24-hour integrated air sample is collected in a canister every six days, and then sent to the USEPA contract laboratory (ERG, located in North Carolina) to be analyzed for VOCs and carbonyls. A previous monitoring site in Camden (officially called the Camden Lab site) had been measuring toxic VOCs for the UATMP since 1989. It was shut down in 2008 when NJDEP lost access to the location. A new monitoring station, the Camden Spruce Street monitoring site, became operational in 2013. The Elizabeth Lab site began measuring VOCs in 2000, and the New Brunswick and Chester sites started in July 2001. In 2016 the New Brunswick VOC monitor was replaced by one at a new station at Rutgers University, less than a mile away.

Analysis of some toxic metals and other elements also began in 2001, at Camden, Chester, Elizabeth Lab and New Brunswick, as part of USEPA's Chemical Speciation Network (CSN). The Newark Firehouse site was added in 2010, and the New Brunswick CSN monitor was moved to Rutgers University in 2016. The CSN was established to characterize the metals, ions and carbon constituents of PM_{2.5}. Filters are collected every three or six days and sent to a national lab for analysis.

New Jersey Air Toxics Monitoring Results for 2017

2017 annual average concentrations of VOCs and carbonyls for the four New Jersey monitoring sites are shown in Table 10-1. All values are in micrograms per cubic meter (μ g/m³). More detail can be found in Tables 10-5 through 10-8, including additional statistics, detection limit information, health benchmarks used by NJDEP, risk ratios, and concentrations in parts per billion by volume (ppbv). The ppbv units are more common in air monitoring, while μ g/m³ units are generally used in air dispersion modeling and health studies.

A number of compounds that were analyzed were mostly below the detection limit of the method used (see Table 10-9). However, this does not mean they are not present in the air below the detection limit level. For chemicals with less than 50% of the samples above the detection limit, there is significant uncertainty in the calculated averages. Median values (the value of the middle sample value when the results are ranked) are reported in Tables 10-5 through 10-8 along with the mean (average) concentrations because for some compounds only a single or very few high values were recorded. These high values will tend to increase the average concentrations, but would have less effect on the median value. In such cases, the median value may be a better indicator of long-term exposure concentrations.

For acrolein, USEPA has determined that the methods used to collect and analyze it in ambient air are not producing reliable results. More information is available at <u>http://archive.epa.gov/schoolair/web/html/acrolein.html</u>. Although we are including the 2017 New Jersey acrolein data in this report, the concentrations are highly uncertain.

Table 10-2 presents the annual average concentrations of toxic metals and elements, along with their health benchmarks (see the "Estimating Health Risk" section below for an explanation). No risk ratios were calculated, because most of the chemicals were below the detection limit and the resulting average concentrations are highly uncertain. Additional data from the CSN monitors can be found in Appendix B (Fine Particulate Speciation Summary) of the annual Air Quality Report.

Table 10-12017 Summary of Toxic Volatile Organic Compounds Monitored in New Jersey

	Pollutant	Synonym	HAP	CAS No.	Camden	Chester	Elizabeth	Rutgers
1	Acetaldehyde		*	75-07-0	2.145	1.100	2.471	1.045
2	Acetone			67-64-1	2.694	1.820	2.430	2.199
3	Acetonitrile		*	75-05-8	3.837	1.181	0.565	0.384
4	Acetylene			74-86-2	0.758	0.436	0.988	0.612
5	Acrolein ^a		*	107-02-8	0.810	0.862	0.976	0.893
6	Acrylonitrile		*	107-13-1	ND	0.001	ND	ND
7	tert-Amyl Methyl Ether			994-05-8	0.002	0.002	0.003	0.003
8	Benzaldehyde			100-52-7	0.281	0.071	0.124	0.080
9	Benzene		*	71-43-2	0.700	0.378	0.811	0.498
10	Bromochloromethane			74-97-5	0.029	0.032	0.025	0.025
11	Bromodichloromethane			75-27-4	0.008	0.005	0.009	0.007
12	Bromoform		*	75-25-2	0.013	0.005	0.014	0.013
13	Bromomethane	Methyl bromide	*	74-83-9	0.691	0.052	0.055	0.050
14	1,3-Butadiene		*	106-99-0	0.073	0.022	0.112	0.046
15	Butyraldehyde			123-72-8	0.353	0.168	0.312	0.166
16	Carbon Disulfide		*	75-15-0	0.062	0.036	0.047	ND
17	Carbon Tetrachloride		*	56-23-5	0.577	0.570	0.571	0.559
18	Chlorobenzene		*	108-90-7	0.012	0.010	0.016	0.010
19	Chloroethane	Ethyl chloride	*	75-00-3	0.027	0.026	0.027	0.051
20	Chloroform		*	67-66-3	0.148	0.125	0.168	0.151
21	Chloromethane	Methyl chloride	*	74-87-3	1.127	1.130	1.132	1.127
22	Chloroprene	2-Chloro-1,3-butadiene	*	126-99-8	0.002	0.001	0.002	0.002
23	Crotonaldehyde			123-73-9	0.325	0.247	0.280	0.209
24	Dibromochloromethane	Chlorodibromomethane		124-48-1	0.025	0.021	0.030	0.023
25	1,2-Dibromoethane	Ethylene dibromide	*	106-93-4	0.005	0.005	0.007	0.008
26	m-Dichlorobenzene	1,3-Dichlorobenzene		541-73-1	0.003	0.001	0.005	0.004
27	o-Dichlorobenzene	1,2-Dichlorobenzene		95-50-1	0.005	0.002	0.006	0.004
28	p-Dichlorobenzene	1,4-Dichlorobenzene	*	106-46-7	0.042	0.007	0.042	0.018
29	Dichlorodifluoromethane			75-71-8	2.598	2.482	2.460	2.459
30	1,1-Dichloroethane	Ethylidene dichloride	*	75-34-3	0.004	0.005	0.009	0.005
31	1,2-Dichloroethane	Ethylene dichloride	*	107-06-2	0.080	0.064	0.080	0.072
32	1,1-Dichloroethylene	Vinylidene chloride	*	75-35-4	0.004	0.004	0.006	0.004
33	cis-1,2-Dichloroethylene	cis-1,2-Dichloroethene		156-59-2	ND	ND	ND	ND
34	trans-1,2-Dichloroethylene	trans-1,2-Dichloroethene		156-60-5	0.010	0.002	0.008	0.005
35	Dichloromethane	Methylene chloride	*	75-09-2	0.419	0.338	0.537	0.430
36	1,2-Dichloropropane	Propylene dichloride	*	78-87-5	0.003	0.004	0.003	0.002

Annual Average Concentrations Micrograms per Cubic Meter (µg/m³)

• Values in *italics* indicate averages based on less than 50% of samples above the detection limit.

- ND indicates that all samples were below the detection limit.
- HAP = Hazardous air pollutant as listed in the Clean Air Act.

^a Acrolein concentrations are highly uncertain because of problems with collection and analysis methods.

Table 10-1 (continued)2017 Summary of Toxic Volatile Organic Compounds Monitored in New Jersey

Pollutant		Synonym	HAP	CAS No.	Camden	Chester	Elizabeth	Rutgers
37 cis-1,3-Dichloropr	opene cis-1,	,3-Dichloropropylene	*	542-75-6	0.002	0.002	0.003	0.002
38 trans-1,3-Dichloro	propene trans	-1,3-Dichloropropylene	*	542-75-6	ND	ND	ND	0.001
39 Dichlorotetrafluoro	bethane Freor	n 114		76-14-2	0.136	0.136	0.138	0.134
40 2,5-Dimethylbenz	aldehyde			5799-94-2	ND	ND	ND	ND
41 Ethyl Acrylate			*	140-88-5	ND	ND	0.0004	ND
42 Ethyl tert-Butyl Et	ner tert-B	Butyl ethyl ether		637-92-3	0.010	0.012	0.076	0.065
43 Ethylbenzene			*	100-41-4	0.556	0.313	0.561	0.442
44 Formaldehyde			*	50-00-0	3.909	1.901	3.821	1.803
45 Hexachloro-1,3-b	utadiene Hexa	chlorobutadiene	*	87-68-3	0.022	0.014	0.029	0.021
46 Hexaldehyde	Hexa	naldehyde		66-25-1	0.189	0.055	0.136	0.081
47 Isovaleraldehyde				590-86-3	ND	ND	ND	ND
48 Methyl Ethyl Keto	ne MEK			78-93-3	0.502	0.304	0.462	0.364
49 Methyl Isobutyl Ke	etone MIBK	(*	108-10-1	0.196	0.102	0.188	0.124
50 Methyl Methacryla	ite		*	80-62-6	0.024	0.006	0.041	0.014
51 Methyl tert-Butyl E	ther MTB	E	*	1634-04-4	0.011	0.005	0.025	0.019
52 n-Octane				111-65-9	0.281	0.092	0.367	0.132
53 Propionaldehyde			*	123-38-6	0.395	0.237	0.407	0.219
54 Propylene				115-07-1	0.815	0.349	2.968	0.531
55 Styrene			*	100-42-5	1.070	0.073	0.143	0.126
56 1,1,2,2-Tetrachlor	oethane		*	79-34-5	0.004	0.004	0.010	0.007
57 Tetrachloroethyle	ne Percł	hloroethylene	*	127-18-4	0.144	0.071	0.179	0.103
58 Tolualdehydes					0.158	0.090	0.126	0.115
59 Toluene			*	108-88-3	2.766	0.604	1.843	0.916
60 1,2,4-Trichlorober	izene		*	102-82-1	0.005	0.004	0.006	0.008
61 1,1,1-Trichloroeth	ane Meth	yl chloroform	*	71-55-6	0.026	0.016	0.028	0.022
62 1,1,2-Trichloroeth	ane		*	79-00-5	0.002	ND	0.004	0.002
63 Trichloroethylene			*	79-01-6	0.058	0.009	0.024	0.011
64 Trichlorofluorome	hane			75-69-4	2.163	1.324	1.332	1.319
65 Trichlorotrifluoroe	hane 1,1,2	-Trichloro-1,2,2-trifluoroethane		76-13-1	0.605	0.600	0.604	0.013
66 1,2,4-Trimethylbe	nzene			95-63-6	0.482	0.110	0.385	0.175
67 1,3,5-Trimethylbe	nzene			108-67-8	0.161	0.044	0.131	0.067
68 Valeraldehyde				110-62-3	0.133	0.057	0.115	0.053
69 Vinyl chloride			*	75-01-4	0.011	0.006	0.008	0.006
70 m,p-Xylene			*	1330-20-7	0.954	0.181	0.914	0.432
71 o-Xylene			*	95-47-6	0.627	0.320	0.612	0.421

Annual Average Concentrations Micrograms per Cubic Meter (µg/m³)

• Values in *italics* indicate averages based on less than 50% of samples above the detection limit.

- ND indicates that all samples were below the detection limit.
- HAP = Hazardous air pollutant as listed in the Clean Air Act.

Table 10-22017 Summary of Toxic Metals and Elements Monitored in New Jersey

Pollutant	HAP ^b	Camden	Chester	Elizabeth	Newark	Rutgers	Health Benchmark (µg/m³) ^c
Antimony	*	0.032	0.006	0.002	0.003	0.0002	
Arsenic	*	0.0004	0.0002	0.0001	0.0004	0.0002	0.00023
Cadmium	*	0.001	0.002	0.0001	0.001	0	0.00024
Chlorine	*	0.297	0.001	0.008	0.014	0.005	0.2
Chromium ^d	*	0.003	0.003	0.004	0.005	0.005	0.000083
Cobalt	*	0.00001	0.0001	0	0	0	0.00011
Lead	*	0.004	0.002	0.002	0.001	0.002	0.083
Manganese	*	0.002	0.0003	0.002	0.001	0.001	0.05
Nickel ^e	*	0.002	0.001	0.001	0.002	0.002	0.0021
Phosphorus	*	0.0004	0.0003	0.001	0.001	0.0003	0.07
Selenium	*	0.0003	0.001	0.001	0.0002	0.001	20
Silicon		0.058	0.030	0.087	0.077	0.043	3
Vanadium		0.0004	0.0004	0.0002	0.0002	0.0003	0.1

Annual Average Concentrations^a Micrograms per Cubic Meter (µg/m³)

^a Most samples were below detection limits, so the annual averages are highly uncertain.

^b HAP = Hazardous air pollutant listed in the Clean Air Act.

^c Health benchmarks in italics have a cancer endpoint. See section below on "Estimating Health Risk" for more information.

^d Chromium's health benchmark is based on carcinogenicity of hexavalent chromium (Cr+6). It is not known how much of the chromium measured by the monitor is hexavalent.

^e Nickel's health benchmark is based on specific nickel compounds. It is not known how much of the nickel measured by the monitor is in that form.

ESTIMATING HEALTH RISK

The effects on human health resulting from exposure to specific air toxics can be estimated by using chemical-specific **health benchmarks**. These are based on toxicity values developed by the USEPA and other agencies, using chemical-specific animal or human health studies. For carcinogens, chemicals suspected of causing cancer, the health benchmark is the concentration of the pollutant that corresponds to a one-in-a-million increase in the risk of getting cancer if a person was to breathe that concentration over his or her entire lifetime. The health benchmark for a noncarcinogen is the air concentration at which no adverse health effect is expected to occur, even if a person is exposed to that concentration on a daily basis for a lifetime (this is also known as a reference concentration). Not all air toxics have health benchmarks, because of a lack of toxicity studies. Available health benchmarks for the VOCs and carbonyls monitored in New Jersey are listed in Tables 10-5 through 10-8.

If ambient air concentrations exceed health benchmarks, regulatory agencies can focus their efforts on reducing emissions or exposure to those chemicals. Dividing the air concentration of a chemical by its

health benchmark gives us a number referred to as a **risk ratio**. If the risk ratio is less than one, the air concentration should not pose a health risk. If it is greater than one, it may be of concern. The risk ratio also indicates how much higher or lower the estimated air concentration is compared to the health benchmark.

The pollutants with risk ratios greater than one for at least one monitoring site are summarized in Table 10-3. Table 10-4 shows the different types of sources that contribute to the levels of those pollutants in the air. Formaldehyde showed the highest risk at all four monitoring sites. Risk ratios for formaldehyde at Camden and Elizabeth were double those at Chester and Rutgers.

Other pollutants above health benchmarks at all four sites were acetaldehyde, benzene, carbon tetrachloride, chloroform, chloromethane (methyl chloride), and 1,2-dichloroethane (ethylene dichloride). 1,2-Dibromoethane had a risk ratio above one at all sites as well, but most of the samples were below the detection limit. 1,3-Butadiene and ethylbenzene were above the health benchmark at all sites except Chester. Tetrachloroethylene was barely over the health benchmark at Elizabeth. To summarize, the Elizabeth Lab site had eleven pollutants with annual average concentrations that exceeded their health benchmarks, Camden and Rutgers had ten, and Chester had eight.

Although the mean concentrations of **acrolein** exceeded the health benchmark at all sites (see Tables 10-5 through 10-8), risk ratios were not calculated because of problems with the sampling and analysis method, as previously mentioned. 50% of ambient acrolein in New Jersey is attributed to mobile sources, 27% to nonpoint sources, 21% to secondary formation, and 2% to point sources.

	Pollutant		Risk Ratio							
	Pollutant	CAS No.	Camden	Chester	Elizabeth	Rutgers				
1	Acetaldehyde	75-07-0	5	2	5	2				
2	Benzene	71-43-2	5	3	6	4				
3	1,3-Butadiene	106-99-0	2		3	1.4				
4	Carbon Tetrachloride	56-23-5	9	9	9	8				
5	Chloroform	67-66-3	3	3	4	4				
6	Chloromethane	74-87-3	2	2	2	2				
7	1,2-Dibromoethane	106-93-4	3	3	4	5				
8	1,2-Dichloroethane	107-06-2	2	1.7	2	1.9				
9	Ethylbenzene	100-41-4	1.4		1.4	1.1				
10	Formaldehyde	50-00-0	51	25	50	23				
11	Tetrachloroethylene	127-18-4			1.1					

Table 10-3Monitored Toxic Air Pollutants with Risk Ratios Greater Than One in NJ for 2017

NOTE: Values in italics are based on less than 50% of samples above the detection limit.

	% Contribution from											
Pollutant			On- Road Mobile Sources	Road Mobile Sources		Secondary Formation ^b	Bio- genics ^c					
Acetaldehyde	0.1%	5%	7%	2%	0%	74%	11%					
Benzene	1.5%	29%	50%	20%	0%	0%	0%					
1,3-Butadiene	0.1%	21%	59%	19%	0%	0%	0%					
Carbon Tetrachloride	0.002%	0.01%	0%	0%	100%	0%	0%					
Chloroform	69%	31%	0%	0%	0%	0%	0%					
Chloromethane	27%	73%	0%	0%	0%	0%	0%					
1,2-Dibromoethane	100%	0.02%	0%	0%	0%	0%	0%					
1,2-Dichloroethane	7%	93%	0%	0%	0%	0%	0%					
Ethylbenzene	1.6%	8%	66%	24%	0%	0%	0%					
Formaldehyde	0.8%	7%	6%	4%	0%	73%	9%					
Tetrachloroethylene	6%	94%	0%	0%	0%	0%	0%					

Table 10-4Sources of Air Toxics with Risk Ratios >1 in NJ

^a Background concentrations are levels of pollutants that would be found in in the air in a given year even if there had been no recent human-caused emissions, because of persistence in the environment of past years' emissions and long-range transport from distant sources.

^b Secondary formation occurs when some volatile organic compounds (VOCs) react chemically in the air with other emitted compounds (usually oxides of nitrogen).

^c Biogenic emissions are those directly emitted from trees, plants and soil microbes (excludes secondary formation).

TRENDS AND COMPARISONS

Monitoring of air toxics in New Jersey has been going on since a UATMP site was established in Camden in 1989. Sampling and analysis methods continue to evolve, most notably with improvements in the ability to detect chemicals at lower concentrations. Figures 10-4 through 10-15 present data for some of the VOCs that have been sampled over the past decade. As mentioned previously, the first toxics monitoring site in Camden (Camden Lab) was shut down in 2008. It is identified in Figures 10-4 through 10-15 as "Camden 1." The new Camden site (Camden Spruce Street), located about two miles from the old site, is designated "Camden 2" in the trend graphs. The New Brunswick monitoring station was shut down in 2016, and most of the monitors were moved less than a mile to the Rutgers University site.

According to USEPA's National Air Toxics Assessment (NATA), **acetaldehyde** concentrations in New Jersey (Figure 10-4) are primarily influenced by secondary formation, a process in which chemicals in the air react with each other and are transformed into other chemicals. Mobile sources also contribute to ambient levels. In 2003, no data was collected in Camden after September, which could have had an influence on the low annual average for that year. In 2004, high levels of acetaldehyde were measured over a number of weeks at both Camden and New Brunswick.

Figures 10-5 and 10-6 show a general decrease in **benzene** and **1,3-butadiene** concentrations over the past decade. Over 50% of New Jersey's ambient benzene and 1,3-butadiene comes from on-road mobile sources, and about 20% comes from non-road mobile sources.

Carbon tetrachloride (Figure 10-7) was once used widely as a degreaser, household cleaner, propellant, refrigerant, and fumigant. It has been phased out of most production and use because of its toxicity and

its ability to deplete stratospheric ozone. However, about 100 tons are still emitted annually by industry in the U.S., although no emissions have been reported in New Jersey for years. It degrades slowly in the environment, so it can be transported from other areas, and levels in the air can remain relatively steady for a long time.

Some of the increase in **chloroform** concentrations shown in Figure 10-8 is believed to be from improvements in the detection limit. The high annual average concentration for New Brunswick in 2014 is attributable to a period of high values in May and June. Point and nonpoint sources (related to waste disposal) are the major contributors to ambient chloroform levels in New Jersey. Chloroform can be formed in small amounts by chlorination of water. It breaks down slowly in ambient air.

As seen in Figure 10-9, **chloromethane** (also known as methyl chloride) levels have remained relatively stable from year to year, and all the sites show similar levels. It was once commonly used as a refrigerant and in the chemical industry, but was phased out because of its toxicity. According to the USEPA's 2014 National Emissions Inventory, about 73% of the chloromethane in New Jersey's air is from nonpoint sources, primarily waste disposal, while 27% is from point sources.

1,2-Dibromoethane (or ethylene dibromide) (Figure 10-10) is currently used as a pesticide in the treatment of felled logs for bark beetles and termites, and control of wax moths in beehives. It was once used as an additive to leaded gasoline and as a soil and grain fumigant, but those uses have been banned by USEPA. Most of the monitoring results fall below the detection limit, so the data in the graph is fairly uncertain.

1,2-Dichloroethane (also called ethylene dichloride) (Figure 10-11) is primarily used in the production of chemicals, as a solvent, dispersant and wetting and penetrating agent. The increase in concentrations after 2011 is related to an improvement in the detection limit, resulting in over 90% of samples having detectable levels of 1,2-dichloroethane. The most recent National Emissions Inventory estimates that 93% of 1,2-dichloroethane in New Jersey's air is from point sources, and 7% from nonpoint sources.

About 90% of **ethylbenzene** is emitted from mobile sources. Improvements in mobile source emissions controls have contributed to the downward trend in air concentrations. 2001 data for Chester and New Brunswick have been omitted from the graph because of technical problems encountered when sampling began that year (Figure 10-12).

Formaldehyde (Figure 10-13) is a ubiquitous pollutant that is often found at higher concentrations indoors rather than outdoors because of its use in many consumer goods. It is used in the production of fertilizer, paper, plywood, urea-formaldehyde resins, and many other products. In New Jersey the primary emitters of formaldehyde are mobile sources, although secondary formation contributes the most to high outdoor levels. In 2014, concentrations at the New Brunswick site were consistently higher than at the other monitors, although they dropped in 2015.

The annual average **styrene** concentration at the Camden Spruce Street monitor dropped below the health benchmark in 2017, although levels are still higher than at the other New Jersey monitors (see Figure 10-14). NJDEP has not been able to find the source of the styrene in Camden. Styrene used in the production of polystyrene plastics and resins, but a significant amount also comes from vehicles.

Tetrachloroethylene (commonly known as perchloroethylene) (Figure 10-15) is widely used as an industrial solvent and in dry cleaning. It is a common contaminant of hazardous waste sites because of a tendency to dispose of it improperly. In recent years, production and demand for it by industry and dry cleaners has been declining.

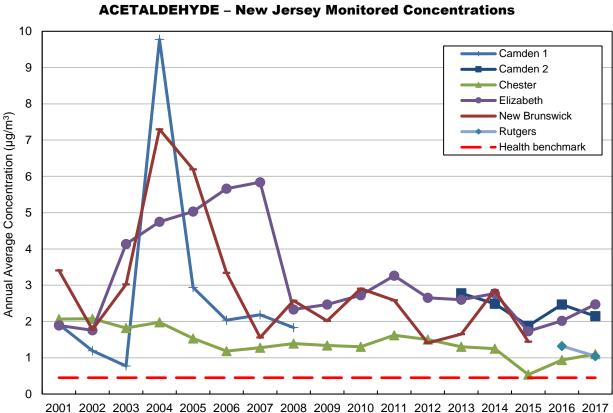
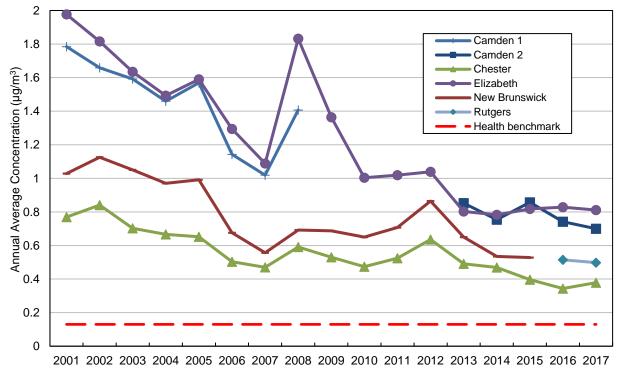



Figure 10-4

Figure 10-5 **BENZENE – New Jersey Monitored Concentrations**

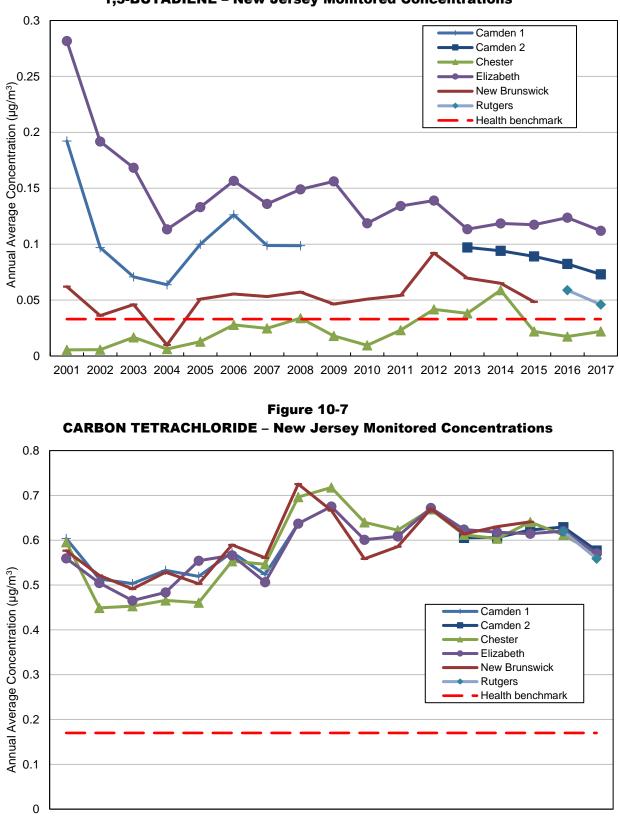


Figure 10-6 1,3-BUTADIENE – New Jersey Monitored Concentrations

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

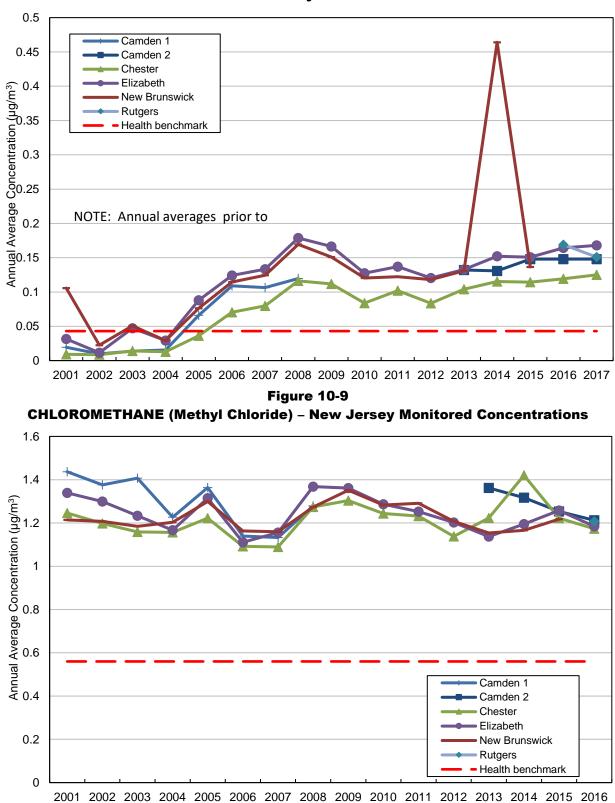
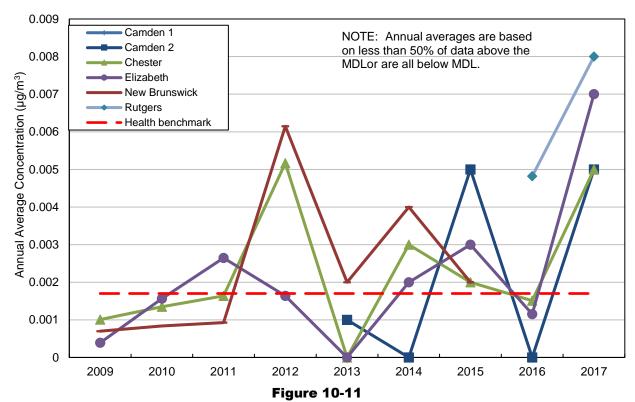
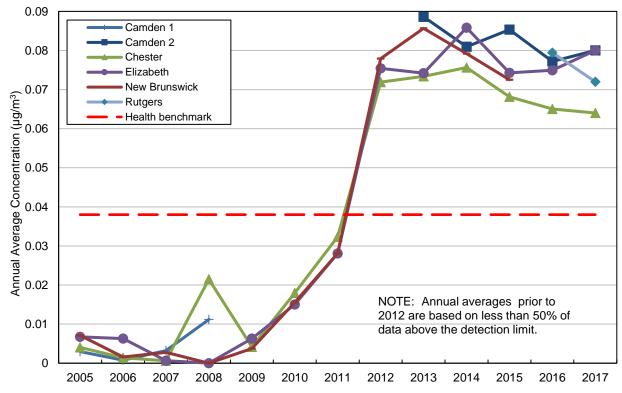




Figure 10-8 CHLOROFORM – New Jersey Monitored Concentrations

Figure 10-10 1,2-DIBROMOETHANE (Ethylene Dibromide) – New Jersey Monitored Concentrations

1,2-DICHLOROETHANE (Ethylene Dichloride) – New Jersey Monitored Concentrations

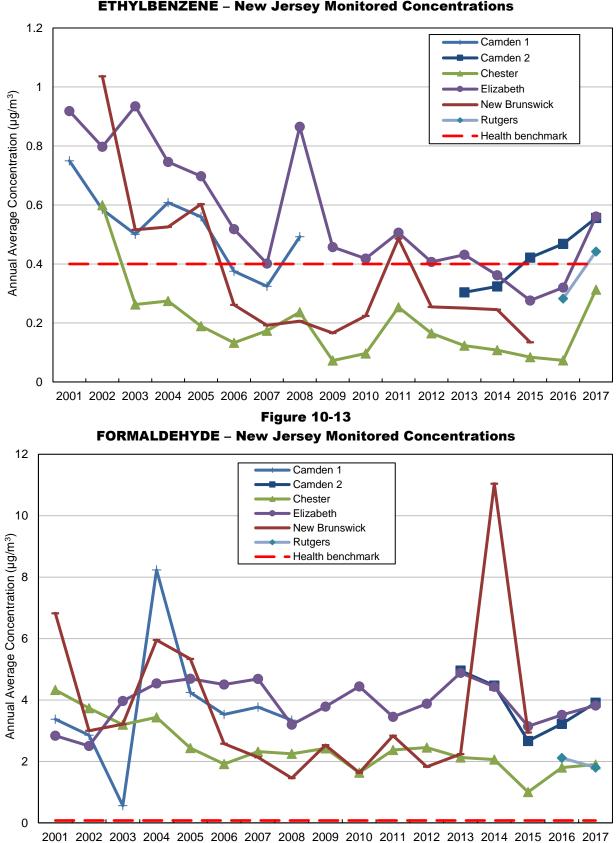


Figure 10-12 ETHYLBENZENE – New Jersey Monitored Concentrations

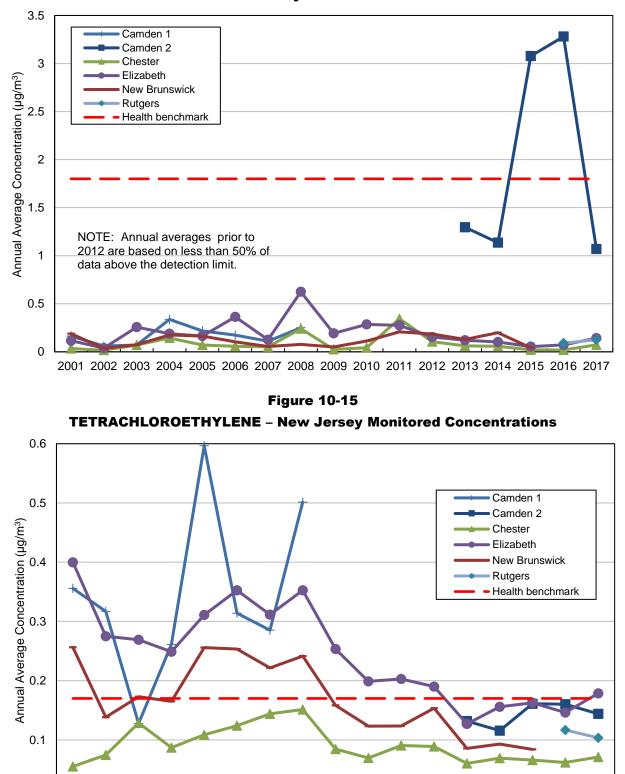


Figure 10-14 STYRENE – New Jersey Monitored Concentrations

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

0

				_			J				
Analyte ^b	CAS No.	Annual Mean (ppbv) ^{c,d}	Annual Median (ppbv) ^{,d}	24-Hour Maximum (ppbv)	Annual Mean (µg/m³) ^{c,d}	Annual Median (µg/m³) ^{,d}	24-Hour Maximum (µg/m³)	Health Bench- mark (µg/m³)º	Annual Mean Risk Ratio ^f	Detection Limit (µg/m³)	% Above Minimum Detection Limit
Acetaldehyde	75-07-0	1.191	1.090	2.930	2.145	1.964	5.279	0.45	5	0.005	100
Acetone	67-64-1	1.134	0.914	2.790	2.694	2.171	6.627	31000	0.0001	0.014	100
Acetonitrile	75-05-8	2.285	0.192	94.400	3.837	0.322	158.502	60	0.1	0.020	100
Acetylene	74-86-2	0.712	0.495	3.020	0.758	0.527	3.216			0.033	100
Acrolein ^g	107-02-8	0.353	0.327	0.908	0.810	0.750	2.082	0.02	40	0.046	100
Acrylonitrile	107-13-1	ND	ND	ND	ND	ND	ND	0.015	0	0.065	0
tert-Amyl Methyl Ether	994-05-8	0.0004	0	0.007	0.002	0	0.029			0.033	7
Benzaldehyde	100-52-7	0.065	0.038	0.347	0.281	0.163	1.506			0.074	100
Benzene	71-43-2	0.219	0.203	0.479	0.700	0.647	1.530	0.13	5	0.010	100
Bromochloromethane	74-97-5	0.005	0	0.045	0.029	0	0.238			0.206	15
Bromodichloromethane	75-27-4	0.001	0	0.011	0.008	0	0.074			0.101	15
Bromoform	75-25-2	0.001	0	0.014	0.013	0	0.145	0.91	0.01	0.186	15
Bromomethane	74-83-9	0.178	0.017	6.150	0.691	0.064	23.880	5	0.1	0.066	96
1,3-Butadiene	106-99-0	0.033	0.026	0.122	0.073	0.058	0.270	0.033	2	0.031	96
Butyraldehyde	123-72-8	0.120	0.114	0.224	0.353	0.336	0.661			0.027	100
Carbon Disulfide	75-15-0	0.020	0.017	0.095	0.062	0.053	0.296	700	0.0001	0.009	100
Carbon Tetrachloride	56-23-5	0.092	0.093	0.114	0.577	0.582	0.717	0.067	9	0.075	100
Chlorobenzene	108-90-7	0.003	0	0.013	0.012	0	0.060	1000	0.00001	0.046	30
Chloroethane	75-00-3	0.010	0	0.038	0.027	0	0.100	10000	0.000003	0.047	46
Chloroform	67-66-3	0.030	0.030	0.056	0.148	0.146	0.273	0.043	3	0.044	100
Chloromethane	74-87-3	0.546	0.541	0.683	1.127	1.116	1.410	0.56	2	0.033	100
Chloroprene	126-99-8	0.0004	0	0.012	0.002	0	0.043	7	0.0002	0.040	6
Crotonaldehyde	123-73-9	0.114	0.048	0.501	0.325	0.138	1.436	-		0.049	100
Dibromochloromethane	594-18-3	0.003	0	0.013	0.025	0	0.111			0.051	44
1,2-Dibromoethane	106-93-4	0.001	0	0.013	0.005	0	0.100	0.0017	3	0.138	7
m-Dichlorobenzene	541-73-1	0.001	0	0.011	0.003	0	0.066			0.168	7
o-Dichlorobenzene	95-50-1	0.001	0	0.012	0.005	0	0.072	200	0.00002	0.144	9
p-Dichlorobenzene	106-46-7	0.007	0.009	0.030	0.042	0.051	0.180	0.091	0.5	0.156	52
Dichlorodifluoromethane	75-71-8	0.525	0.518	0.740	2.598	2.562	3.660	200	0.01	0.064	100
1,1-Dichloroethane	75-34-3	0.001	0	0.013	0.004	0	0.053	0.63	0.01	0.061	9
1,2-Dichloroethane	107-06-2	0.020	0.019	0.046	0.080	0.077	0.186	0.038	2	0.053	98
1,1-Dichloroethene	75-35-4	0.001	0	0.010	0.004	0	0.040	200	0.00002	0.032	15
cis-1,2-Dichloroethylene	156-59-2	ND	ND	ND	ND	ND	ND			0.048	0
trans-1,2-Dichloroethylene	156-60-5	0.003	0	0.027	0.010	0	0.107			0.048	20
Dichloromethane	75-09-2	0.121	0.113	0.380	0.419	0.391	1.320	2.1	0.2	0.028	100

 Table 10-5

 CAMDEN SPRUCE STREET - 2017 NJ Toxic VOCs Monitoring Data^a

^a See page 10-25 for footnotes.

Table 10-5 (continued)

CAMDEN SPRUCE STREET - 2017 NJ Toxic VOCs Monitoring Data^a

CAMPEN SPROCE STREET - 2017 NJ TOXIC VOCS MOINTOINING Data											
Analyte ^b	CAS No.	Annual Mean (ppbv) ^{c,d}	Annual Median (ppbv) ^{,d}	24-Hour Maximum (ppbv)	Annual Mean (µg/m³) ^{c,d}	Annual Median (µg/m³) ^{,d}	24-Hour Maximum (µg/m³)	Health Bench- mark (µg/m ³) ^e	Annual Mean Risk Ratio ^f	Detection Limit (µg/m³)	% Above Minimum Detection Limit
1,2-Dichloropropane	78-87-5	0.001	0	0.014	0.003	0	0.065	0.1	0.03	0.079	6
cis-1,3-Dichloropropene	542-75-6	0.0004	0	0.011	0.002	0	0.050			0.064	4
trans-1,3-Dichloropropene	542-75-6	ND	ND	ND	ND	ND	ND			0.095	0
Dichlorotetrafluoroethane	76-14-2	0.020	0.018	0.030	0.136	0.126	0.210			0.133	100
2,5-Dimethylbenzaldehyde	5799-94-2	ND	ND	ND	ND	ND	ND			0.011	0
Ethyl Acrylate	140-88-5	ND	ND	ND	ND	ND	ND	2	0	0.033	0
Ethyl tert-Butyl Ether	637-92-3	0.002	0	0.012	0.010	0	0.050			0.046	31
Ethylbenzene	100-41-4	0.128	0.120	0.348	0.556	0.521	1.511	0.40	1.4	0.035	100
Formaldehyde	50-00-0	3.183	2.520	9.440	3.909	3.095	11.593	0.077	51	0.023	100
Hexachloro-1,3-butadiene	87-68-3	0.002	0	0.012	0.022	0	0.128	0.045	0.5	0.117	28
Hexaldehyde	66-25-1	0.046	0.035	0.146	0.189	0.143	0.598			0.139	100
Isovaleraldehyde	590-86-3	ND	ND	ND	ND	ND	ND			0.007	0
Methyl Ethyl Ketone	78-93-3	0.170	0.142	0.495	0.502	0.419	1.459	5000	0.0001	0.074	100
Methyl Isobutyl Ketone	108-10-1	0.048	0.043	0.307	0.196	0.174	1.258	3000	0.0001	0.057	93
Methyl Methacrylate	80-62-6	0.006	0	0.058	0.024	0	0.237	700	0.00003	0.115	33
Methyl tert-Butyl Ether	1634-04-4	0.003	0	0.042	0.011	0	0.151	3.8	0.003	0.050	22
n-Octane	111-65-9	0.060	0.041	0.241	0.281	0.192	1.126			0.079	100
Propionaldehyde	123-38-6	0.166	0.141	0.382	0.395	0.335	0.907	8	0.05	0.007	100
Propylene	115-07-1	0.474	0.382	1.460	0.815	0.657	2.513	3000	0.0003	0.055	100
Styrene	100-42-5	0.251	0.074	2.700	1.070	0.315	11.501	1.8	0.6	0.068	98
1,1,2,2-Tetrachloroethane	79-34-5	0.001	0	0.012	0.004	0	0.082	0.017	0.2	0.124	7
Tetrachloroethylene	127-18-4	0.021	0.019	0.048	0.144	0.129	0.326	0.17	0.8	0.095	98
Tolualdehydes		0.032	0.023	0.130	0.158	0.113	0.639			0.020	98
Toluene	108-88-3	0.734	0.469	6.980	2.766	1.767	26.304	5000	0.001	0.068	100
1,2,4-Trichlorobenzene	102-82-1	0.001	0	0.014	0.005	0	0.104	4	0.001	0.371	6
1,1,1-Trichloroethane	71-55-6	0.005	0.005	0.013	0.026	0.027	0.071	1000	0.00003	0.071	63
1,1,2-Trichloroethane	79-00-5	0.0003	0	0.010	0.002	0	0.055	0.063	0.03	0.093	4
Trichloroethylene	79-01-6	0.011	0	0.076	0.058	0	0.408	0.5	0.1	0.091	44
Trichlorofluoromethane	75-69-4	0.385	0.268	1.560	2.163	1.506	8.765	700	0.003	0.045	100
Trichlorotrifluoroethane	76-13-1	0.079	0.080	0.096	0.605	0.609	0.736	30000	0.00002	0.069	100
1,2,4-Trimethylbenzene	95-63-6	0.098	0.073	0.461	0.482	0.356	2.266			0.103	100
1,3,5-Trimethylbenzene	108-67-8	0.033	0.026	0.140	0.161	0.128	0.688			0.103	100
Valeraldehyde	110-62-3	0.038	0.037	0.084	0.133	0.130	0.296			0.007	100
Vinyl chloride	75-01-4	0.004	0	0.032	0.011	0	0.082	0.11	0.1	0.020	37
m,p-Xylene	1330-20-7	0.220	0.155	0.850	0.954	0.673	3.691	100	0.01	0.017	100
o-Xylene	95-47-6	0.144	0.124	0.423	0.627	0.536	1.837	100	0.01	0.069	100
à Cas name 10 25 fau facturet			1	-	· · · · · · · · · · · · · · · · · · ·				-		,

^a See page 10-25 for footnotes.

						•					
Analyte ^b	CAS No.	Annual Mean (ppbv) ^{c,d}	Annual Median (ppbv) ^{,d}	24-Hour Maximum (ppbv)	Annual Mean (µg/m³) ^{c,d}	Annual Median (µg/m³) ^{,d}	24-Hour Maximum (µg/m³)	Health Bench- mark (µg/m³) ^e	Annual Mean Risk Ratio ^f	Detection Limit (µg/m³)	% Above Minimum Detection Limit
Acetaldehyde	75-07-0	0.611	0.602	1.760	1.100	1.084	3.171	0.45	2	0.005	100
Acetone	67-64-1	0.766	0.703	1.640	1.820	1.670	3.896	31000	0.0001	0.014	100
Acetonitrile	75-05-8	0.703	0.198	13.200	1.181	0.332	22.163	60	0.02	0.020	100
Acetylene	74-86-2	0.409	0.308	2.010	0.436	0.328	2.141			0.033	100
Acrolein ^g	107-02-8	0.376	0.340	0.906	0.862	0.780	2.077	0.02	43	0.046	100
Acrylonitrile	107-13-1	0.001	0	0.037	0.001	0	0.080	0.015	0.1	0.065	2
tert-Amyl Methyl Ether	994-05-8	0.000	0	0.008	0.002	0	0.033			0.033	7
Benzaldehyde	100-52-7	0.016	0.016	0.037	0.071	0.069	0.161			0.074	98
Benzene	71-43-2	0.118	0.103	0.260	0.378	0.329	0.831	0.13	3	0.010	100
Bromochloromethane	74-97-5	0.006	0	0.050	0.032	0	0.265			0.206	16
Bromodichloromethane	75-27-4	0.001	0	0.011	0.005	0	0.074			0.101	9
Bromoform	75-25-2	0.0004	0	0.010	0.005	0	0.103	0.91	0.01	0.186	5
Bromomethane	74-83-9	0.013	0.011	0.083	0.052	0.043	0.322	5	0.01	0.066	86
1,3-Butadiene	106-99-0	0.010	0.007	0.048	0.022	0.015	0.106	0.033	0.7	0.031	61
Butyraldehyde	123-72-8	0.057	0.055	0.115	0.168	0.162	0.339			0.027	100
Carbon Disulfide	75-15-0	0.011	0.010	0.037	0.036	0.031	0.115	700	0.0001	0.009	100
Carbon Tetrachloride	56-23-5	0.091	0.091	0.113	0.570	0.573	0.711	0.067	9	0.075	100
Chlorobenzene	108-90-7	0.002	0	0.011	0.010	0	0.051	1000	0.00001	0.046	27
Chloroethane	75-00-3	0.010	0	0.042	0.026	0	0.111	10000	0.000003	0.047	45
Chloroform	67-66-3	0.026	0.024	0.039	0.125	0.117	0.190	0.043	3	0.044	100
Chloromethane	74-87-3	0.547	0.546	0.695	1.130	1.127	1.435	0.56	2	0.033	100
Chloroprene	126-99-8	0.0004	0	0.010	0.001	0	0.036	7	0.0002	0.040	4
Crotonaldehyde	123-73-9	0.086	0.022	0.515	0.247	0.062	1.476	-		0.049	96
Dibromochloromethane	594-18-3	0.002	0	0.011	0.021	0	0.094			0.051	38
1,2-Dibromoethane	106-93-4	0.001	0	0.012	0.005	0	0.092	0.0017	3	0.138	7
m-Dichlorobenzene	541-73-1	0.0001	0	0.007	0.001	0	0.042			0.168	2
o-Dichlorobenzene	95-50-1	0.0003	0	0.008	0.002	0	0.048	200	0.00001	0.144	4
p-Dichlorobenzene	106-46-7	0.001	0	0.016	0.007	0	0.096	0.091	0.1	0.156	9
Dichlorodifluoromethane	75-71-8	0.502	0.508	0.605	2.482	2.512	2.992	200	0.01	0.064	100
1,1-Dichloroethane	75-34-3	0.001	0	0.011	0.005	0	0.045	0.63	0.01	0.061	13
1,2-Dichloroethane	107-06-2	0.016	0.017	0.024	0.064	0.067	0.097	0.038	1.7	0.053	93
1,1-Dichloroethene	75-35-4	0.001	0	0.009	0.004	0	0.036	200	0.00002	0.032	14
cis-1,2-Dichloroethylene	156-59-2	ND	ND	ND	ND	ND	ND			0.048	0
trans-1,2-Dichloroethylene	156-60-5	0.0004	0	0.009	0.002	0	0.036			0.048	5
Dichloromethane	75-09-2	0.097	0.095	0.160	0.338	0.330	0.556	2.1	0.2	0.028	100

 Table 10-6

 CHESTER - 2017 NJ Toxic VOCs Monitoring Data^a

^a See page 10-25 for footnotes.

Table 10-6 (continued)CHESTER - 2017 NJ Toxic VOCs Monitoring Dataa

				TT NO TOXIC VOOS Monitoring Data							
Analyte ^b	CAS No.	Annual Mean (ppbv) ^{c,d}	Annual Median (ppbv) ^{,d}	24-Hour Maximum (ppbv)	Annual Mean (µg/m³) ^{c,d}	Annual Median (µg/m³) ^{,d}	24-Hour Maximum (µg/m³)	Health Bench- mark (µg/m ³) ^e	Annual Mean Risk Ratio ^f	Detection Limit (µg/m³)	% Above Minimum Detection Limit
1,2-Dichloropropane	78-87-5	0.001	0	0.013	0.004	0	0.060	0.1	0.04	0.079	7
cis-1,3-Dichloropropene	542-75-6	0.0004	0	0.012	0.002	0	0.054			0.064	4
trans-1,3-Dichloropropene	542-75-6	ND	ND	ND	ND	ND	ND			0.095	0
Dichlorotetrafluoroethane	76-14-2	0.019	0.018	0.034	0.136	0.126	0.238			0.133	100
2,5-Dimethylbenzaldehyde	5799-94-2	ND	ND	ND	ND	ND	ND			0.011	0
Ethyl Acrylate	140-88-5	ND	ND	ND	ND	ND	ND	2	0	0.033	0
Ethyl tert-Butyl Ether	637-92-3	0.003	0	0.013	0.012	0	0.054			0.046	36
Ethylbenzene	100-41-4	0.072	0.080	0.127	0.313	0.345	0.551	0.40	0.8	0.035	100
Formaldehyde	50-00-0	1.548	1.340	5.830	1.901	1.646	7.160	0.077	25	0.023	100
Hexachloro-1,3-butadiene	87-68-3	0.001	0	0.009	0.014	0	0.096	0.045	0.3	0.117	18
Hexaldehyde	66-25-1	0.013	0.012	0.051	0.055	0.049	0.209			0.139	89
Isovaleraldehyde	590-86-3	ND	ND	ND	ND	ND	ND			0.007	0
Methyl Ethyl Ketone	78-93-3	0.103	0.090	0.247	0.304	0.265	0.728	5000	0.0001	0.074	100
Methyl Isobutyl Ketone	108-10-1	0.025	0.024	0.060	0.102	0.098	0.246	3000	0.00003	0.057	95
Methyl Methacrylate	80-62-6	0.002	0	0.013	0.006	0	0.053	700	0.00001	0.115	20
Methyl tert-Butyl Ether	1634-04-4	0.001	0	0.010	0.005	0	0.036	3.8	0.001	0.050	16
n-Octane	111-65-9	0.020	0.017	0.075	0.092	0.079	0.350			0.079	96
Propionaldehyde	123-38-6	0.100	0.092	0.240	0.237	0.219	0.570	8	0.03	0.007	100
Propylene	115-07-1	0.203	0.181	0.556	0.349	0.311	0.957	3000	0.0001	0.055	100
Styrene	100-42-5	0.017	0.018	0.040	0.073	0.075	0.170	1.8	0.04	0.068	86
1,1,2,2-Tetrachloroethane	79-34-5	0.001	0	0.010	0.004	0	0.069	0.017	0.2	0.124	7
Tetrachloroethylene	127-18-4	0.010	0.011	0.026	0.071	0.075	0.176	0.17	0.4	0.095	82
Tolualdehydes		0.018	0.015	0.058	0.090	0.074	0.285			0.020	85
Toluene	108-88-3	0.160	0.140	0.516	0.604	0.528	1.945	5000	0.0001	0.068	100
1,2,4-Trichlorobenzene	102-82-1	0.001	0	0.016	0.004	0	0.119	4	0.001	0.371	4
1,1,1-Trichloroethane	71-55-6	0.003	0	0.011	0.016	0	0.060	1000	0.00002	0.071	43
1,1,2-Trichloroethane	79-00-5	ND	ND	ND	ND	ND	ND	0.063	0	0.093	0
Trichloroethylene	79-01-6	0.002	0	0.015	0.009	0	0.081	0.5	0.02	0.091	16
Trichlorofluoromethane	75-69-4	0.236	0.235	0.295	1.324	1.320	1.657	700	0.002	0.045	100
Trichlorotrifluoroethane	76-13-1	0.078	0.078	0.092	0.600	0.598	0.705	30000	0.00002	0.069	100
1,2,4-Trimethylbenzene	95-63-6	0.022	0.017	0.228	0.110	0.084	1.121			0.103	98
1,3,5-Trimethylbenzene	108-67-8	0.009	0.007	0.061	0.044	0.034	0.300			0.103	89
Valeraldehyde	110-62-3	0.016	0.015	0.044	0.057	0.053	0.155			0.007	93
Vinyl chloride	75-01-4	0.002	0	0.016	0.006	0	0.041	0.11	0.1	0.020	30
m,p-Xylene	1330-20-7	0.042	0.033	0.115	0.181	0.141	0.499	100	0.002	0.017	100
o-Xylene	95-47-6	0.074	0.083	0.130	0.320	0.358	0.565	100	0.003	0.069	100

^a See page 10-25 for footnotes.

Analyte ^b	CAS No.	Annual Mean (ppbv) ^{c,d}	Annual Median (ppbv) ^{,d}	24-Hour Maximum (ppbv)	Annual Mean (µg/m³) ^{c,d}	Annual Median (µg/m³) ^{,d}	24-Hour Maximum (µg/m³)	Health Bench- mark (µg/m³) ^e	Annual Mean Risk Ratio ^f	Detection Limit (µg/m³)	% Above Minimum Detection Limit
Acetaldehyde	75-07-0	1.372	1.010	13.300	2.471	1.820	23.963	0.45	5	0.005	100
Acetone	67-64-1	1.023	0.925	4.140	2.430	2.197	9.834	31000	0.0001	0.014	100
Acetonitrile	75-05-8	0.336	0.216	1.580	0.565	0.363	2.653	60	0.01	0.020	100
Acetylene	74-86-2	0.928	0.669	5.010	0.988	0.712	5.335			0.033	100
Acrolein ^g	107-02-8	0.426	0.394	0.900	0.976	0.902	2.064	0.02	49	0.046	100
Acrylonitrile	107-13-1	ND	ND	ND	ND	ND	ND	0.015	0	0.065	0
tert-Amyl Methyl Ether	994-05-8	0.001	0	0.009	0.003	0	0.038			0.033	11
Benzaldehyde	100-52-7	0.029	0.027	0.074	0.124	0.117	0.321			0.074	100
Benzene	71-43-2	0.254	0.214	1.090	0.811	0.684	3.482	0.13	6	0.010	100
Bromochloromethane	74-97-5	0.005	0	0.043	0.025	0	0.228			0.206	13
Bromodichloromethane	75-27-4	0.001	0	0.011	0.009	0	0.074			0.101	16
Bromoform	75-25-2	0.001	0	0.013	0.014	0	0.134	0.91	0.02	0.186	15
Bromomethane	74-83-9	0.014	0.013	0.044	0.055	0.050	0.171	5	0.01	0.066	93
1,3-Butadiene	106-99-0	0.051	0.045	0.180	0.112	0.100	0.398	0.033	3	0.031	98
Butyraldehyde	123-72-8	0.106	0.098	0.243	0.312	0.289	0.717			0.027	100
Carbon Disulfide	75-15-0	0.015	0.013	0.046	0.047	0.040	0.143	700	0.0001	0.009	100
Carbon Tetrachloride	56-23-5	0.091	0.091	0.118	0.571	0.573	0.742	0.067	9	0.075	100
Chlorobenzene	108-90-7	0.003	0	0.031	0.016	0	0.143	1000	0.00002	0.046	34
Chloroethane	75-00-3	0.010	0	0.071	0.027	0	0.187	10000	0.000003	0.047	39
Chloroform	67-66-3	0.034	0.034	0.059	0.168	0.166	0.288	0.043	4	0.044	100
Chloromethane	74-87-3	0.548	0.549	0.677	1.132	1.134	1.398	0.56	2	0.033	100
Chloroprene	126-99-8	0.0005	0	0.012	0.002	0	0.043	7	0.0002	0.040	5
Crotonaldehyde	123-73-9	0.098	0.047	0.452	0.280	0.135	1.296			0.049	100
Dibromochloromethane	594-18-3	0.004	0.002	0.013	0.030	0.017	0.111			0.051	51
1,2-Dibromoethane	106-93-4	0.001	0	0.010	0.007	0	0.077	0.0017	4	0.138	10
m-Dichlorobenzene	541-73-1	0.001	0	0.010	0.005	0	0.060			0.168	11
o-Dichlorobenzene	95-50-1	0.001	0	0.011	0.006	0	0.066	200	0.00003	0.144	11
p-Dichlorobenzene	106-46-7	0.007	0	0.034	0.042	0	0.204	0.091	0.5	0.156	49
Dichlorodifluoromethane	75-71-8	0.497	0.503	0.652	2.460	2.487	3.224	200	0.01	0.064	100
1,1-Dichloroethane	75-34-3	0.002	0	0.015	0.009	0	0.061	0.63	0.01	0.061	21
1,2-Dichloroethane	107-06-2	0.020	0.020	0.048	0.080	0.081	0.194	0.038	2	0.053	97
1,1-Dichloroethene	75-35-4	0.002	0	0.010	0.006	0	0.040	200	0.00003	0.032	18
cis-1,2-Dichloroethylene	156-59-2	ND	ND	ND	ND	ND	ND			0.048	0
trans-1,2-Dichloroethylene	156-60-5	0.002	0	0.023	0.008	0	0.091			0.048	16
Dichloromethane	75-09-2	0.155	0.134	0.612	0.537	0.465	2.126	2.1	0.3	0.028	100

 Table 10-7

 ELIZABETH LAB - 2017 NJ Toxic VOCs Monitoring Data^a

^a See page 10-25 for footnotes.

Table 10-7 (continued)

ELIZABETH LAB - 2017 NJ Toxic VOCs Monitoring Dataa

Analyte ^b	CAS No.	Annual Mean (ppbv) ^{c,d}	Annual Median (ppbv) ^{,d}	24-Hour Maximum (ppbv)	Annual Mean (µg/m³) ^{c,d}	Annual Median (µg/m³) ^{,d}	24-Hour Maximum (µg/m³)	Health Bench- mark (µg/m³) ^e	Annual Mean Risk Ratio ^f	Detection Limit (µg/m³)	% Above Minimum Detection Limit
1,2-Dichloropropane	78-87-5	0.0006	0	0.014	0.003	0	0.065	0.1	0.03	0.079	5
cis-1,3-Dichloropropene	542-75-6	0.0006	0	0.012	0.003	0	0.054			0.064	7
trans-1,3-Dichloropropene	542-75-6	ND	ND	ND	ND	ND	ND			0.095	0
Dichlorotetrafluoroethane	76-14-2	0.020	0.019	0.029	0.138	0.133	0.203			0.133	100
2,5-Dimethylbenzaldehyde	5799-94-2	ND	ND	ND	ND	ND	ND			0.011	0
Ethyl Acrylate	140-88-5	0.0001	0	0.006	0.0004	0	0.025	2	0.0002	0.033	2
Ethyl tert-Butyl Ether	637-92-3	0.018	0.016	0.088	0.076	0.067	0.368		0.0001	0.046	95
Ethylbenzene	100-41-4	0.129	0.132	0.398	0.561	0.573	1.728	0.40	1.4	0.035	100
Formaldehyde	50-00-0	3.112	2.430	13.400	3.821	2.984	16.456	0.077	50	0.023	100
Hexachloro-1,3-butadiene	87-68-3	0.003	0	0.011	0.029	0	0.117	0.045	0.6	0.117	34
Hexaldehyde	66-25-1	0.033	0.031	0.077	0.136	0.127	0.315	0.010	0.0	0.139	100
Isovaleraldehyde	590-86-3	ND	ND	ND	ND	ND	ND			0.007	0
Methyl Ethyl Ketone	78-93-3	0.157	0.133	0.534	0.462	0.392	1.574	5000	0.0001	0.074	100
Methyl Isobutyl Ketone	108-10-1	0.046	0.046	0.120	0.188	0.188	0.492	3000	0.0001	0.074	95
Methyl Methacrylate	80-62-6	0.040	0.040	0.120	0.041	0.100	0.492	700	0.0001	0.037	39
Methyl tert-Butyl Ether	1634-04-4	0.007	0	0.057	0.047	0	0.320	3.8	0.0001	0.050	48
n-Octane	111-65-9	0.079	0.064	0.648	0.367	0.299	3.027	3.0	0.01	0.030	100
Propionaldehyde	123-38-6	0.079	0.004	0.465	0.307	0.299	1.105	8	0.1	0.079	100
Propylene	115-07-1	1.725	0.791	9.760	2.968	1.361	16.798	3000	0.001	0.007	100
	100-42-5	0.034	0.033	0.076	0.143			1.8	0.001	0.055	97
Styrene 1,1,2,2-Tetrachloroethane	79-34-5	0.034		0.076	0.143	0.141	0.324		0.1	0.068	97 18
	127-18-4	0.002	0.020	0.012	0.010	0 0.136	0.082	0.017 0.17	0.6 1.1	0.124	98
Tetrachloroethylene	127-10-4							0.17	1.1	0.095	98
Tolualdehydes	400.00.0	0.026	0.019	0.074	0.126	0.091	0.364	5000	0.0004		
Toluene	108-88-3	0.489	0.415	2.340	1.843	1.564	8.818	5000	0.0004	0.068	100
1,2,4-Trichlorobenzene	102-82-1 71-55-6	0.001	0	0.015	0.006 0.028	0	0.111	4 1000	0.002	0.371	7 69
1,1,1-Trichloroethane		0.005	0.006	0.014		0.033	0.076		0.00003	0.071	
1,1,2-Trichloroethane	79-00-5	0.001	0	0.011	0.004	0	0.060	0.063	0.1	0.093	8
Trichloroethylene	79-01-6	0.005	0	0.018	0.024	0	0.097	0.5	0.05	0.091	38
Trichlorofluoromethane	75-69-4	0.237	0.240	0.303	1.332	1.348	1.702	700	0.002	0.045	100
Trichlorotrifluoroethane	76-13-1	0.079	0.079	0.110	0.604	0.605	0.843	30000	0.00002	0.069	100
1,2,4-Trimethylbenzene	95-63-6	0.078	0.073	0.289	0.385	0.359	1.421			0.103	100
1,3,5-Trimethylbenzene	108-67-8	0.027	0.027	0.082	0.131	0.133	0.403			0.103	100
Valeraldehyde	110-62-3	0.033	0.029	0.084	0.115	0.102	0.296			0.007	100
Vinyl chloride	75-01-4	0.003	0	0.015	0.008	0	0.038	0.11	0.1	0.020	31
m,p-Xylene	1330-20-7	0.211	0.189	1.150	0.914	0.821	4.994	100	0.01	0.017	100
o-Xylene	95-47-6	0.141	0.138	0.480	0.612	0.599	2.084	100	0.01	0.069	100

^a See page 10-25 for footnotes.

Table 10-8

RUTGERS UNIVERSITY - 2017 NJ Toxic VOCs Monitoring Dataa

				-			J				
Analyte ^b	CAS No.	Annual Mean (ppbv) ^{c,d}	Annual Median (ppbv) ^{,d}	24-Hour Maximum (ppbv)	Annual Mean (µg/m³) ^{c,d}	Annual Median (µg/m³) ^{,d}	24-Hour Maximum (µg/m³)	Health Bench- mark (µg/m³) ^e	Annual Mean Risk Ratio ^f	Detection Limit (µg/m³)	% Above Minimum Detection Limit
Acetaldehyde	75-07-0	0.580	0.557	1.360	1.045	1.004	2.450	0.45	2	0.005	100
Acetone	67-64-1	0.926	0.898	2.690	2.199	2.132	6.390	31000	0.0001	0.014	100
Acetonitrile	75-05-8	0.229	0.214	0.743	0.384	0.359	1.248	60	0.01	0.020	100
Acetylene	74-86-2	0.574	0.391	3.390	0.612	0.416	3.610			0.033	100
Acrolein ^g	107-02-8	0.389	0.349	0.981	0.893	0.800	2.249	0.02	45	0.046	100
Acrylonitrile	107-13-1	ND	ND	ND	ND	ND	ND	0.015	0	0.065	0
tert-Amyl Methyl Ether	994-05-8	0.001	0	0.010	0.003	0	0.042			0.033	10
Benzaldehyde	100-52-7	0.019	0.018	0.035	0.080	0.078	0.152			0.074	100
Benzene	71-43-2	0.156	0.135	0.667	0.498	0.431	2.131	0.13	4	0.010	100
Bromochloromethane	74-97-5	0.005	0	0.045	0.025	0	0.238			0.206	15
Bromodichloromethane	75-27-4	0.001	0	0.012	0.007	0	0.080			0.101	12
Bromoform	75-25-2	0.001	0	0.012	0.013	0	0.124	0.91	0.01	0.186	15
Bromomethane	74-83-9	0.013	0.012	0.033	0.050	0.047	0.128	5	0.01	0.066	90
1,3-Butadiene	106-99-0	0.021	0.018	0.126	0.046	0.040	0.279	0.033	1.4	0.031	82
Butyraldehyde	123-72-8	0.056	0.053	0.133	0.166	0.156	0.392			0.027	100
Carbon Disulfide	75-15-0	ND	ND	ND	ND	ND	ND	700	0	0.009	0
Carbon Tetrachloride	56-23-5	0.089	0.091	0.117	0.559	0.569	0.736	0.067	8	0.075	100
Chlorobenzene	108-90-7	0.002	0	0.013	0.010	0	0.060	1000	0.00001	0.046	25
Chloroethane	75-00-3	0.019	0	0.223	0.051	0	0.588	10000	0.00001	0.047	48
Chloroform	67-66-3	0.031	0.029	0.058	0.151	0.139	0.283	0.043	4	0.044	100
Chloromethane	74-87-3	0.546	0.535	0.684	1.127	1.104	1.412	0.56	2	0.033	100
Chloroprene	126-99-8	0.000	0	0.011	0.002	0	0.040	7	0.000	0.040	5
Crotonaldehyde	123-73-9	0.073	0.032	0.421	0.209	0.092	1.207			0.049	100
Dibromochloromethane	594-18-3	0.003	0	0.012	0.023	0	0.102			0.051	43
1,2-Dibromoethane	106-93-4	0.001	0	0.013	0.008	0	0.100	0.0017	5	0.138	10
m-Dichlorobenzene	541-73-1	0.001	0	0.010	0.004	0	0.060			0.168	8
o-Dichlorobenzene	95-50-1	0.001	0	0.010	0.004	0	0.060	200	0.00002	0.144	8
p-Dichlorobenzene	106-46-7	0.003	0	0.026	0.018	0	0.156	0.091	0.2	0.156	23
Dichlorodifluoromethane	75-71-8	0.497	0.502	0.612	2.459	2.480	3.027	200	0.01	0.064	100
1,1-Dichloroethane	75-34-3	0.001	0	0.012	0.005	0	0.049	0.63	0.01	0.061	12
1,2-Dichloroethane	107-06-2	0.018	0.018	0.026	0.072	0.073	0.105	0.038	1.9	0.053	98
1,1-Dichloroethene	75-35-4	0.001	0	0.010	0.004	0	0.040	200	0.00002	0.032	15
cis-1,2-Dichloroethylene	156-59-2	ND	ND	ND	ND	ND	ND			0.048	0
trans-1,2-Dichloroethylene	156-60-5	0.001	0	0.018	0.005	0	0.071			0.048	12
Dichloromethane	75-09-2	0.124	0.109	0.702	0.430	0.377	2.439	2.1	0.2	0.028	100

^a See page 10-25 for footnotes.

Table 10-8 (continued)

RUTGERS UNIVERSITY - 2017 NJ Toxic VOCs Monitoring Dataa

Analyte ^b	CAS No.	Annual Mean (ppbv) ^{c,d}	Annual Median (ppbv) ^{,d}	24-Hour Maximum (ppbv)	Annual Mean (µg/m³) ^{c,d}	Annual Median (µg/m³) ^{,d}	24-Hour Maximum (µg/m³)	Health Benchmark (µg/m³)º	Annual Mean Risk Ratio ^f	Detection Limit (µg/m³)	% Above Minimum Detection Limit
1,2-Dichloropropane	78-87-5	0.000	0	0.015	0.002	0	0.069	0.1	0.02	0.079	3
cis-1,3-Dichloropropene	542-75-6	0.000	0	0.014	0.002	0	0.064			0.064	3
trans-1,3-Dichloropropene	542-75-6	0.000	0	0.018	0.001	0	0.082			0.095	2
Dichlorotetrafluoroethane	76-14-2	0.019	0.018	0.028	0.134	0.126	0.196			0.133	100
2,5-Dimethylbenzaldehyde	5799-94-2	ND	ND	ND	ND	ND	ND			0.011	0
Ethyl Acrylate	140-88-5	ND	ND	ND	ND	ND	ND	2	0	0.033	0
Ethyl tert-Butyl Ether	637-92-3	0.016	0.016	0.036	0.065	0.067	0.150			0.046	97
Ethylbenzene	100-41-4	0.102	0.108	0.209	0.442	0.469	0.908	0.40	1.1	0.035	100
Formaldehyde	50-00-0	1.469	1.285	4.570	1.803	1.578	5.612	0.077	24	0.023	100
Hexachloro-1,3-butadiene	87-68-3	0.002	0	0.010	0.021	0	0.107	0.045	0.5	0.117	25
Hexaldehyde	66-25-1	0.020	0.019	0.072	0.081	0.078	0.295			0.139	98
Isovaleraldehyde	590-86-3	ND	ND	ND	ND	ND	ND			0.007	0
Methyl Ethyl Ketone	78-93-3	0.124	0.107	0.316	0.364	0.314	0.931	5000	0.0001	0.074	100
Methyl Isobutyl Ketone	108-10-1	0.030	0.029	0.110	0.124	0.117	0.451	3000	0.00004	0.057	95
Methyl Methacrylate	80-62-6	0.003	0	0.020	0.014	0	0.082	700	0.00002	0.115	30
Methyl tert-Butyl Ether	1634-04-4	0.005	0	0.021	0.019	0	0.076	3.8	0.01	0.050	43
n-Octane	111-65-9	0.028	0.026	0.070	0.132	0.121	0.327			0.079	100
Propionaldehyde	123-38-6	0.092	0.086	0.241	0.219	0.203	0.572	8	0.03	0.007	100
Propylene	115-07-1	0.308	0.291	1.190	0.531	0.501	2.048	3000	0.0002	0.055	100
Styrene	100-42-5	0.030	0.027	0.089	0.126	0.115	0.379	1.8	0.1	0.068	97
1,1,2,2-Tetrachloroethane	79-34-5	0.001	0	0.010	0.007	0	0.069	0.017	0.4	0.124	13
Tetrachloroethylene	127-18-4	0.015	0.013	0.039	0.103	0.085	0.265	0.17	0.6	0.095	93
Tolualdehydes		0.023	0.021	0.060	0.115	0.103	0.295			0.020	94
Toluene	108-88-3	0.243	0.213	0.795	0.916	0.801	2.996	5000	0.0002	0.068	100
1,2,4-Trichlorobenzene	102-82-1	0.001	0	0.017	0.008	0	0.126	4	0.002	0.371	8
1,1,1-Trichloroethane	71-55-6	0.004	0.004	0.013	0.022	0.022	0.071	1000	0.00002	0.071	60
1,1,2-Trichloroethane	79-00-5	0.000	0	0.011	0.002	0	0.060	0.063	0.03	0.093	3
Trichloroethylene	79-01-6	0.002	0	0.014	0.011	0	0.075	0.5	0.02	0.091	18
Trichlorofluoromethane	75-69-4	0.235	0.236	0.284	1.319	1.323	1.596	700	0.002	0.045	100
Trichlorotrifluoroethane	76-13-1	0.002	0	0.100	0.013	0	0.766	30000	0.0000004	0.069	2
1,2,4-Trimethylbenzene	95-63-6	0.036	0.033	0.094	0.175	0.162	0.462			0.103	100
1,3,5-Trimethylbenzene	108-67-8	0.014	0.012	0.038	0.067	0.059	0.187			0.103	97
Valeraldehyde	110-62-3	0.015	0.014	0.043	0.053	0.049	0.151			0.007	97
Vinyl chloride	75-01-4	0.002	0	0.015	0.006	0	0.038	0.11	0.1	0.020	28
m,p-Xylene	1330-20-7	0.099	0.084	0.291	0.432	0.365	1.264	100	0.004	0.017	100
o-Xylene	95-47-6	0.097	0.106	0.184	0.421	0.460	0.799	100	0.004	0.069	100

^a See page 10-25 for footnotes.

Footnotes for Tables 10-5 through 10-8

^b Analytes in bold text had annual means above the long-term health benchmark.

^c Numbers in italics are arithmetic means (or averages) based on less than 50% of the samples above the detection limit.

^d For a valid 24-hour sampling event, when the analyzing laboratory reports the term "Not Detected" for a particular pollutant, the concentration of 0.0 ppbv is assigned to that pollutant. These zero concentrations were included in the calculation of annual averages and medians for each pollutant regardless of percent detection.

^e A health benchmark is defined as the chemical-specific air concentration above which there may be human health concerns. For a carcinogen (cancer-causing chemical), the health benchmark is set at the air concentration that would cause no more than a one-in-a-million increase in the likelihood of getting cancer, even after a lifetime of exposure. For a non-carcinogen, the health benchmark is the maximum air concentration to which exposure is likely to cause no harm, even if that exposure occurs on a daily basis for a lifetime. These toxicity values are not available for all chemicals. For more information, go to www.nj.gov/dep/aqpp/risk.html.

^f A risk ratio for a chemical is a comparison of the annual mean air concentration to the long-term health benchmark. If the annual mean is 0, then the annual mean risk ratio is not calculated.

^g Acrolein concentrations are highly uncertain because of problems with collection and analysis methods. **ND** indicates that all samples were below the detection limit.

	Pollutant	CAS No.	Camden	Chester	Elizabeth	Rutgers
1	Acrylonitrile	107-13-1	Х		Х	Х
2	Carbon Disulfide	75-15-0				Х
3	cis-1,2-Dichloroethylene	156-59-2	Х	Х	Х	Х
4	trans-1,3-Dichloropropene	542-75-6	Х	Х	Х	
5	2,5-Dimethylbenzaldehyde	5799-94-2	Х	Х	Х	Х
6	Ethyl Acrylate	140-88-5	Х	Х		Х
7	lsovaleraldehyde	590-86-3	Х	Х	Х	Х
8	1,1,2-Trichloroethane	79-00-5		Х		

Table 10-9Analytes with 100% Non-Detects in 2017

In 2017, samples of the chemicals in Table 10-9 were never above the detection limit at the specified monitoring location. However, these pollutants may be present in the air below the detection limit level. Chemical-specific detection limits can be found in Tables 10-5 through 10-8.

REFERENCES

Agency for Toxic Substances and Disease Control (ATSDR). Toxic Substances Portal – Toxicological Profiles. <u>www.atsdr.cdc.gov/toxprofiles/index.asp#D</u>. Accessed 8/23/2018.

N.J. Department of Environmental Protection (NJDEP). Air Toxics in New Jersey. <u>www.nj.gov/dep/airtoxics</u>. Accessed 8/23/2018.

NJDEP. Risk Screening Tools. <u>www.nj.gov/dep/aqpp/risk.html</u>. Accessed 8/23/2018.

NJDEP, Toxicity Values for Inhalation Exposure, October 2017. www.nj.gov/dep/aqpp/downloads/risk/ToxAll2017.pdf. Accessed 8/23/2018.

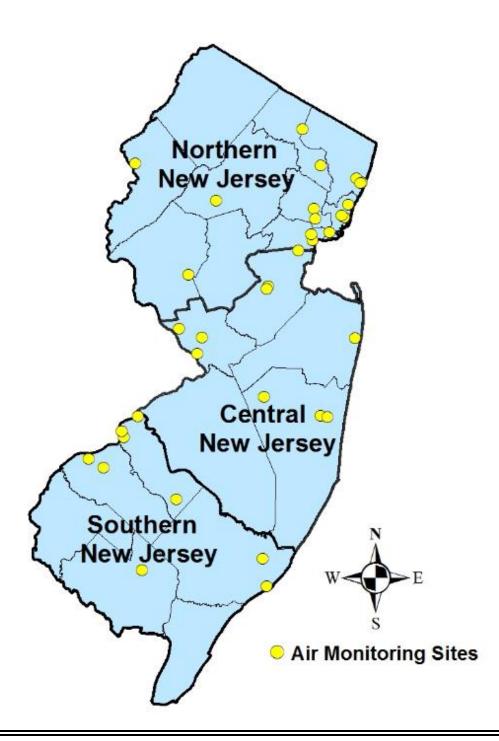
U.S. Environmental Protection Agency (USEPA). Air Pollution and Health Risk, EPA-450/3-90-022, March 1991. <u>www3.epa.gov/ttn/atw/3 90 022.html</u>. Accessed 8/23/2018.

USEPA. Air Toxics – Urban Air Toxics Monitoring Program. <u>https://www3.epa.gov/ttn/amtic/uatm.html</u>. Accessed 8/23/2018.

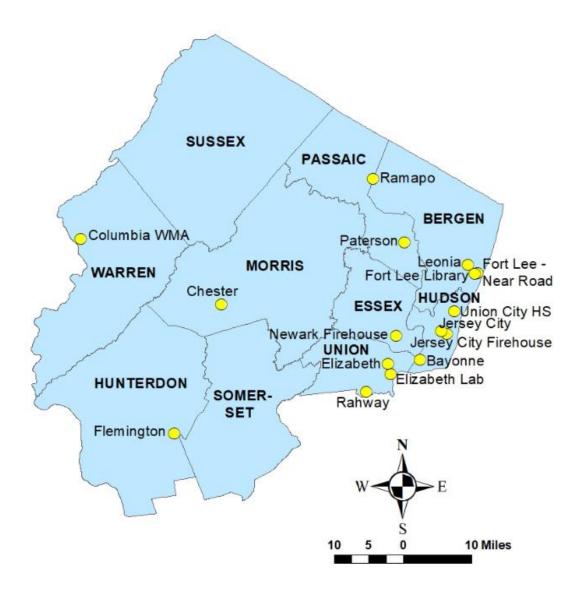
USEPA. Chemical Speciation Network. <u>www3.epa.gov/ttn/amtic/speciepg.html</u>. Accessed 8/23/2018.

USEPA. Evaluating Exposures to Toxic Air Pollutants: A Citizen's Guide, EPA-450/3-90-023. March 1991. <u>www3.epa.gov/ttn/atw/3 90 023.html</u>. Accessed 8/23/2018.

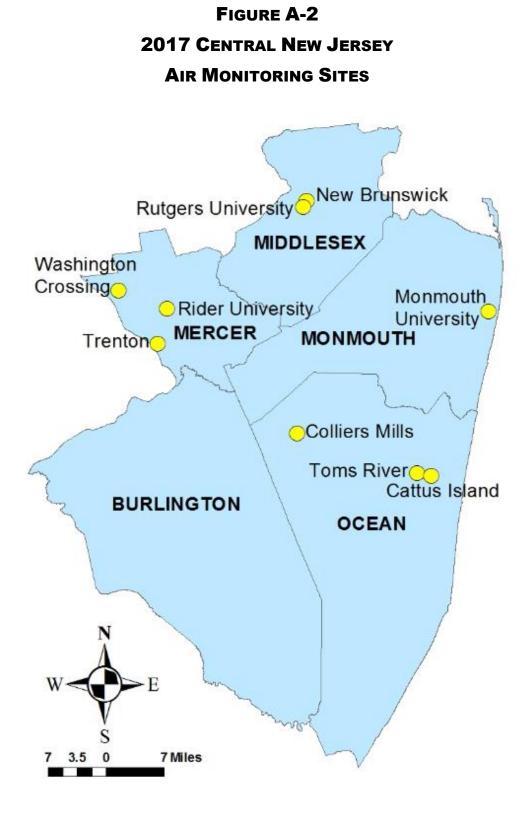
USEPA. Health Effects Notebook for Hazardous Air Pollutants. <u>www.epa.gov/haps/health-effects-notebook-hazardous-air-pollutants</u>. Accessed 8/23/2018.


USEPA. National Air Toxics Assessment. <u>https://www.epa.gov/national-air-toxics-assessment/2014-nata-assessment-results#pollutant</u>. Accessed 8/27/2018.

USEPA, Risk Assessment for Toxic Air Pollutants: A Citizens Guide, EPA 450/3/90-024. March 1991. <u>www3.epa.gov/ttn/atw/3_90_024.html</u>. Accessed 8/23/2018.


USEPA. 1990 Clean air Act Amendment Summary: Title III. <u>www.epa.gov/clean-air-act-overview/1990-</u> <u>clean-air-act-amendment-summary-title-iii</u>. Accessed 8/23/2018.

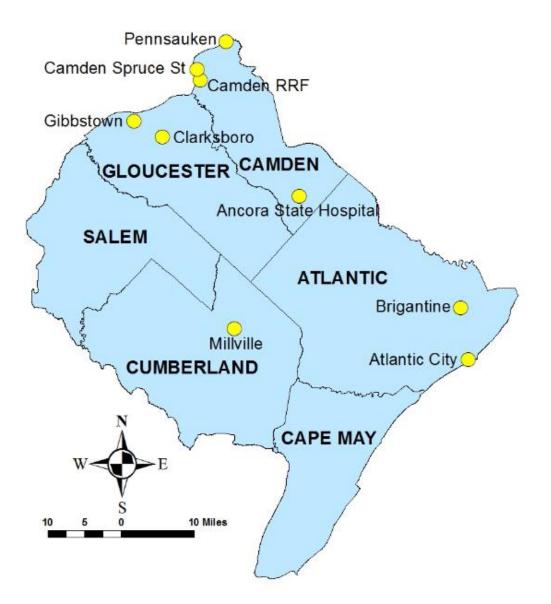
New Jersey Department of Environmental Protection



County	Manifaring Site	AIRS Code	Parameter(s)		dinates I degrees)	Address
County	Monitoring Site	AIRS Code	Measured ¹	Latitude	Longitude	Address
BERGEN	Fort Lee Library	34 003 0003	PM _{2.5}	40.852256	-73.973314	320 Main Street
	Fort Lee Near Road	34 003 0010	CO, NO _x , Beta, BTEX, BC, Met	40.853550	-73.966180	2047 Central Ave.
	Leonia	34 003 0006	O ₃	40.870436	-73.991994	Overpeck Park, 40 Fort Lee Road
ESSEX	Newark Firehouse	34 013 0003	CO, O ₃ , SO ₂ , PM _{2.5} , Spec, NOy, NO _X , BTEX, Pb, Beta, BC, Met, PM _{coarse}	40.720989	-74.192892	Engine 10, 360 Clinton Avenue
HUDSON	Bayonne	34 017 0006	NO _X , O ₃ , SO ₂ , BTEX, BC, Met	40.670250	-74.126081	Park Rd at end of W. 25th St.
	Jersey City	34 017 1002	CO, NO _x , SO ₂	40.731645	-74.066308	2828 John F. Kennedy Boulevard
	Jersey City Firehouse	34 017 1003	PM _{2.5} , PM ₁₀ , Beta	40.725454	-74.052290	Engine 6, 355 Newark Avenue
	Union City High School	34 017 0008	PM _{2.5}	40.770908	-74.036218	2500 John F. Kennedy Blvd.
HUNTERDON	Flemington	34 019 0001	O ₃ , Met, Beta	40.515262	-74.806671	Raritan Twp. Municipal Utilities Authority, 365 Old York Road
MORRIS	Chester	34 027 3001	NO _X , O ₃ , SO ₂ , PM _{2.5} , Toxics, Spec	40.787628	-74.676301	Bldg. #1, Department of Public Works, (DPW), 50 North Road
PASSAIC	Paterson	34 031 0005	PM _{2.5}	40.918381	-74.168092	Health Department, 176 Broadway
	Ramapo	34 031 5001	O ₃	41.058617	-74.255544	Ramapo Mountain State Forest, Access Road, off Skyline Drive, Wanaque
UNION	Elizabeth	34 039 0003	CO, SO ₂	40.662493	-74.214800	7 Broad Street
	Elizabeth Lab	34 039 0004	CO, NO _x , SO ₂ , Met, PM _{2.5} , Toxics, Hg, Spec, BTEX, BC, Beta	40.641440	-74.208365	Interchange 13 Toll Plaza, New Jersey Turnpike
	Rahway	34 039 2003	PM _{2.5} , TEOM	40.603943	-74.276174	Fire Dept. Headquarters, 1300 Main Street
WARREN	Columbia WMA	34 041 0007	NOx, O ₃ , SO ₂ , PM _{2.5} , Met, Beta	40.924580	-75.067815	Columbia Wildlife Management Area, 105 Delaware Road, Knowlton Twp.

Table A-12017 Northern New Jersey Air Monitoring Sites

¹ See abbreviations and acronyms in Table A-4 (page A-8).



County	County Monitoring Site AIRS		Parameter(s) Measured ¹	Coordi (Decimal		Address	
ocumy	Monitoring one		r uranicier(o) measurea	Latitude	Longitude	Addioss	
MERCER	Rider University	34 021 0005	O ₃ , Met, Beta	40.283092	-74.742644	2083 Lawrenceville Rd, Athletic Fields, Lawrence Twp.	
	Trenton	34 021 0008	PM _{2.5}	40.222411	-74.763167	Trenton Public Library, 120 Academy Street	
	Washington Crossing	N/A	ACID	40.315359	-74.853613	1240 Bear Tavern Road, Washington Crossing State Park, Titusville	
MIDDLESEX	Rutgers University	34 023 0011	NO _X , O ₃ , Met ² , PAMS, Beta, PM _{2.5} , Toxics, Spec, Hg	40.462182	-74.429439	Horticultural Farm #3, 67 Ryders Lane, East Brunswick	
MONMOUTH	Monmouth University	34 025 0005	O ₃	40.277647	-74.005100	Edison Science Bldg., 400 Cedar Avenue, West Long Branch	
OCEAN	Cattus Island	N/A	ACID	39.989636	-74.134132	Cattus Island County Park, end of Bandon Road, Toms River	
	Colliers Mills	34 029 0006	O ₃	40.064830	-74.444050	Colliers Mills Wildlife Management Area, Success Rd. near Hawkin Rd., Jackson Twp.	
	Toms River	34 029 2002	PM _{2.5}	39.994908	-74.170447	Hooper Avenue Elementary School, 1517 Hooper Avenue	

Table A-2 2017 Central New Jersey Air Monitoring Sites

¹ See abbreviations and acronyms in Table A-4 (page A-8).
 ² Meteorological measurements at the site are collected by Rutgers University.

FIGURE A-3 2017 SOUTHERN NEW JERSEY AIR MONITORING SITES

County	Monitoring Site	AIRS Code	Parameter(s)		linates degrees)	Address
County	Monitoring Site	AINS CODE	Measured ¹	Latitude	Longitude	Address
ATLANTIC	Atlantic City	34 001 1006	PM _{2.5}	39.363260	-74.431000	Atlantic Cape Community College, 1535 Bacharach Boulevard
	Brigantine	34 001 0006	Visibility, O ₃ , SO ₂ , Beta, PM _{2.5} , ACID ²	39.464872	-74.448736	Edwin B. Forsythe National Wildlife Refuge Visitor Center, 800 Great Creek Road, Galloway
CAMDEN	Ancora State Hospital	34 007 1001	O ₃	39.684250	-74.861491	301 Spring Garden Road, Hammonton
	Camden RRF	34 007 0009	PM ₁₀	39.912431	-75.116864	600 Morgan Street
	Camden Spruce Street	34 007 0002	CO, NO _X , O ₃ , SO ₂ , PM _{2.5} , Spec, BTEX, BC, Toxics, Met, Beta	39.934446	-75.125291	226-298 Spruce Street
	Pennsauken	34 007 1007	PM _{2.5}	39.989036	-75.050008	Morris-Delair Water Treatment Plant, 8999 Zimmerman Ave.
CUMBERLAND	Millville	34 011 0007	NO _x , O ₃ , Beta	39.422273	-75.025204	Next to 4425 South Main Road
GLOUCESTER	Clarksboro	34 015 0002	O _{3,} PM _{2.5}	39.800339	-75.212119	Shady Lane Complex, 256 County House Road
	Gibbstown	34 015 0004	PM _{2.5}	39.830837	-75.284682	Municipal Maintenance Yard, 61 North School Street

Table A-3 2017 Southern New Jersey Air Monitoring Sites

¹ See abbreviations and acronyms in Table A-4 (page A-8). ² United States Fish and Wildlife Service-Air Quality Branch (USFWS-AQB) is responsible for sample collection.

ACID	Acid Deposition
BC	Black carbon measured by aethalometer
Beta	Real-time PM _{2.5} analyzer
BTEX	Measures benzene, toluene, ethylbenzene and xylenes
со	Carbon monoxide
Hg	Mercury
Met	Meteorological parameters
NOx	Nitrogen dioxide and nitric oxide
NOy	Total reactive oxides of nitrogen
O3	Ozone
PAMS	Photochemical Assessment Monitoring Station, measures ozone precursors
Pb	Lead
PM _{2.5}	Fine particles (2.5 microns or less) collected by a Federal Reference Method $PM_{2.5}$ sampler
PM10	Coarse particles (10 microns or less) collected by a Federal Reference Method PM_{10} sampler
PM _{coarse}	Difference between PM ₁₀ and PM _{2.5} measurements
SO ₂	Sulfur dioxide
Spec	Speciated fine particles (2.5 microns or less)
TEOM	Real-time PM _{2.5} analyzer
Toxics	Air toxics
Visibility	Measured by nephelometer

Table A-4 Abbreviations & Acronyms

New Jersey Department of Environmental Protection

Table 1 2017 Fine Particulate Speciation Concentrations CAMDEN SPRUCE STREET NJ

Micrograms per Cubic Meter (µg/m³)

	Pollutant	Annual Average	Maximum Daily Average
1	Aluminum	0.032	0.176
2	Ammonium Ion	0.454	3.112
3	Antimony	0.004	0.049
4	Arsenic	0.0004	0.006
5	Barium	0.004	0.090
6	Bromine	0.003	0.014
7	Cadmium	0.001	0.024
8	Calcium	0.083	0.925
9	Carbon, Elemental	0.651	2.101
10	Carbon, Organic	2.273	6.072
11	Cerium	0.004	0.090
12	Cesium	0.004	0.061
13	Chlorine	0.297	8.496
14	Chromium	0.005	0.077
15	Cobalt	0.00001	0.004
16	Copper	0.006	0.023
17	Indium	0.001	0.028
18	Iron	0.136	0.968
19	Lead	0.004	0.028
20	Magnesium	0.011	0.140
21	Manganese	0.002	0.009
22	Nickel	0.002	0.022
23	Nitrate	0.888	5.513
24	Phosphorus	0.0004	0.007
25	Potassium	0.107	0.718
26	Potassium Ion	0.071	0.717
27	Rubidium	0.001	0.010
28	Selenium	0.0003	0.006
29	Silicon	0.058	0.287
30	Silver	0.003	0.020
31	Sodium	0.091	0.673
32	Sodium Ion	0.132	1.914
33	Strontium	0.001	0.005
34	Sulfate	1.071	6.177
35	Sulfur	0.380	1.570
36	Tin	0	0.058
37	Titanium	0.003	0.011
38	Vanadium	0.0004	0.003
39	Zinc	0.026	0.133
40	Zirconium	0.001	0.044

Table 2 2017 Fine Particulate Speciation Concentrations CHESTER NJ

Micrograms per Cubic Meter (µg/m³)

	Pollutant	Annual Average	Maximum Daily Average
1	Aluminum	0.017	0.175
2	Ammonium Ion	0.206	1.346
3	Antimony	0.006	0.062
4	Arsenic	0.0002	0.006
5	Barium	0.003	0.069
6	Bromine	0.001	0.006
7	Cadmium	0.002	0.032
8	Calcium	0.023	0.095
9	Carbon, Elemental	0.269	0.896
10	Carbon, Organic	1.505	4.493
11	Cerium	0.004	0.090
12	Cesium	0	0.059
13	Chlorine	0.001	0.071
14	Chromium	0.003	0.020
15	Cobalt	0.0001	0.003
16	Copper	0.004	0.017
17	Indium	0.001	0.013
18	Iron	0.034	0.156
19	Lead	0.002	0.013
20	Magnesium	0.001	0.052
21	Manganese	0.0003	0.004
22	Nickel	0.001	0.005
23	Nitrate	0.631	3.485
24	Phosphorus	0.0003	0.004
25	Potassium	0.041	0.176
26	Potassium Ion	0.015	0.064
27	Rubidium	0.0003	0.007
28	Selenium	0.0005	0.004
29	Silicon	0.030	0.209
30	Silver	0.001	0.025
31	Sodium	0.035	0.369
32	Sodium Ion	0.029	0.228
33	Strontium	0.0005	0.005
34	Sulfate	0.763	2.198
35	Sulfur	0.283	0.909
36	Tin	0.003	0.048
37	Titanium	0.002	0.013
38	Vanadium	0.0004	0.002
39	Zinc	0.007	0.033
40	Zirconium	0.002	0.045

Table 3 2017 Fine Particulate Speciation Concentrations ELIZABETH LAB NJ

Micrograms per Cubic Meter (µg/m³)

	Pollutant	Annual Average	Maximum Daily Average
1	Aluminum	0.039	0.396
2	Ammonium Ion	0.304	2.229
3	Antimony	0.002	0.045
4	Arsenic	0.0001	0.006
5	Barium	0.012	0.108
6	Bromine	0.002	0.015
7	Cadmium	0.0001	0.016
8	Calcium	0.052	0.269
9	Carbon, Elemental	1.024	2.784
10	Carbon, Organic	2.374	6.268
11	Cerium	0.001	0.140
12	Cesium	0.002	0.062
13	Chlorine	0.008	0.132
14	Chromium	0.004	0.061
15	Cobalt	0	0.002
16	Copper	0.008	0.028
17	Indium	0	0.024
18	Iron	0.149	0.562
19	Lead	0.002	0.018
20	Magnesium	0.015	0.175
21	Manganese	0.002	0.014
22	Nickel	0.001	0.015
23	Nitrate	1.030	6.597
24	Phosphorus	0.001	0.010
25	Potassium	0.058	0.380
26	Potassium Ion	0.026	0.470
27	Rubidium	0	0.008
28	Selenium	0.001	0.006
29	Silicon	0.087	0.730
30	Silver	0.002	0.018
31	Sodium	0.051	0.450
32	Sodium Ion	0.065	1.042
33	Strontium	0.001	0.012
34	Sulfate	0.922	2.815
35	Sulfur	0.356	1.068
36	Tin	0.002	0.040
37	Titanium	0.006	0.029
38	Vanadium	0.0002	0.004
39	Zinc	0.014	0.036
40	Zirconium	0.002	0.036

Table 4 2017 Fine Particulate Speciation Data NEWARK FIREHOUSE NJ

Concentrations in Micrograms per Cubic Meter (µg/m³)

	Pollutant	Annual Average	Maximum Daily Average
1	Aluminum	0.030	0.749
2	Ammonium Ion	0.270	1.641
3	Antimony	0.003	0.051
4	Arsenic	0.0004	0.010
5	Barium	0.009	0.083
6	Bromine	0.002	0.009
7	Cadmium	0.001	0.025
8	Calcium	0.047	0.325
9	Carbon, Elemental	0.640	1.937
10	Carbon, Organic	2.276	6.387
11	Cerium	0.009	0.112
12	Cesium	0.004	0.056
13	Chlorine	0.014	0.509
14	Chromium	0.005	0.325
15	Cobalt	0	0.008
16	Copper	0.008	0.049
17	Indium	0.0004	0.037
18	Iron	0.112	1.202
19	Lead	0.001	0.021
20	Magnesium	0.014	0.083
21	Manganese	0.001	0.013
22	Nickel	0.002	0.114
23	Nitrate	1.029	6.226
24	Phosphorus	0.001	0.008
25	Potassium	0.056	0.375
26	Potassium Ion	0.024	0.321
27	Rubidium	0.0002	0.010
28	Selenium	0.0002	0.005
29	Silicon	0.077	1.388
30	Silver	0.001	0.028
31	Sodium	0.066	0.739
32	Sodium Ion	0.060	0.641
33	Strontium	0.001	0.010
34	Sulfate	0.805	2.130
35	Sulfur	0.323	0.899
36	Tin	0.001	0.046
37	Titanium	0.005	0.038
38	Vanadium	0.0002	0.002
39	Zinc	0.014	0.077
40	Zirconium	0.004	0.040

Table 52017 Fine Particulate Speciation DataRUTGERS UNIVERSITY NJ

Concentrations in Micrograms per Cubic Meter (µg/m³)

	Pollutant	Annual Average	Maximum Daily Average
1	Aluminum	0.021	0.489
2	Ammonium Ion	0.202	1.774
3	Antimony	0.0002	0.044
4	Arsenic	0.0002	0.004
5	Barium	0.008	0.080
6	Bromine	0.001	0.008
7	Cadmium	0	0.018
8	Calcium	0.024	0.120
9	Carbon, Elemental	0.477	1.867
10	Carbon, Organic	2.039	7.700
11	Cerium	0.004	0.114
12	Cesium	0.003	0.086
13	Chlorine	0.005	0.301
14	Chromium	0.005	0.073
15	Cobalt	0	0.005
16	Copper	0.005	0.017
17	Indium	0	0.022
18	Iron	0.062	0.292
19	Lead	0.002	0.025
20	Magnesium	0.012	0.135
21	Manganese	0.001	0.012
22	Nickel	0.002	0.024
23	Nitrate	0.772	5.616
24	Phosphorus	0.0003	0.003
25	Potassium	0.048	0.307
26	Potassium Ion	0.021	0.311
27	Rubidium	0	0.005
28	Selenium	0.001	0.006
29	Silicon	0.043	0.920
30	Silver	0.002	0.026
31	Sodium	0.044	0.398
32	Sodium Ion	0.049	0.334
33	Strontium	0.001	0.011
34	Sulfate	0.745	2.177
35	Sulfur	0.296	0.864
36	Tin	0.003	0.051
37	Titanium	0.003	0.030
38	Vanadium	0.0003	0.004
39	Zinc	0.008	0.023
40	Zirconium	0.002	0.045